- -

Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez Fortuño, Francisco José es_ES
dc.contributor.author Marino, Giuseppe es_ES
dc.contributor.author Ginzburg, Pavel es_ES
dc.contributor.author O’Connor, Daniel es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Wurtz, Gregory A. es_ES
dc.contributor.author Zayats, Anatoly V. es_ES
dc.date.accessioned 2015-07-03T10:56:28Z
dc.date.available 2015-07-03T10:56:28Z
dc.date.issued 2013-04-19
dc.identifier.issn 0036-8075
dc.identifier.uri http://hdl.handle.net/10251/52672
dc.description.abstract Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization. es_ES
dc.description.sponsorship This work has been supported in part by the Engineering and Physical Sciences Research Council (grant EP/H000917/2). F.J.R.-F. acknowledges support from grant FPI of Generalitat Valenciana. A. M. acknowledges financial support from the Spanish government (contracts Consolider EMET CSD2008-00066 and TEC2011-28664-C02-02). P. G. acknowledges the Royal Society for a Newton International Fellowship. en_EN
dc.language Inglés es_ES
dc.publisher American Association for the Advancement of Science es_ES
dc.relation.ispartof Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Surface-plasmons es_ES
dc.subject Broad-band es_ES
dc.subject Propagation es_ES
dc.subject Radiaciones ionizantes es_ES
dc.subject Antennas es_ES
dc.subject Lenses es_ES
dc.subject Phase es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1126/science.1233739
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FH000917%2F2/GB/Active Plasmonics: Electronic and All-optical Control of Photonic Signals on Sub-wavelength Scales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Rodríguez Fortuño, FJ.; Marino, G.; Ginzburg, P.; O’connor, D.; Martínez Abietar, AJ.; Wurtz, GA.; Zayats, AV. (2013). Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science. 340(6130):328-330. https://doi.org/10.1126/science.1233739 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1126/science.1233739 es_ES
dc.description.upvformatpinicio 328 es_ES
dc.description.upvformatpfin 330 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 340 es_ES
dc.description.issue 6130 es_ES
dc.relation.senia 246051
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Royal Society, Reino Unido es_ES
dc.description.references Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., & Gaburro, Z. (2011). Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334(6054), 333-337. doi:10.1126/science.1210713 es_ES
dc.description.references Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2011). Broadband Light Bending with Plasmonic Nanoantennas. Science, 335(6067), 427-427. doi:10.1126/science.1214686 es_ES
dc.description.references Merlin, R. (2007). Radiationless Electromagnetic Interference: Evanescent-Field Lenses and Perfect Focusing. Science, 317(5840), 927-929. doi:10.1126/science.1143884 es_ES
dc.description.references Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 es_ES
dc.description.references Helseth, L. E. (2008). The almost perfect lens and focusing of evanescent waves. Optics Communications, 281(8), 1981-1985. doi:10.1016/j.optcom.2007.12.018 es_ES
dc.description.references Eleftheriades, G. V., & Wong, A. M. H. (2008). Holography-Inspired Screens for Sub-Wavelength Focusing in the Near Field. IEEE Microwave and Wireless Components Letters, 18(4), 236-238. doi:10.1109/lmwc.2008.918871 es_ES
dc.description.references Lee, J. Y., Hong, B. H., Kim, W. Y., Min, S. K., Kim, Y., Jouravlev, M. V., … Kim, K. S. (2009). Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 460(7254), 498-501. doi:10.1038/nature08173 es_ES
dc.description.references Stockman, M. I., Faleev, S. V., & Bergman, D. J. (2002). Coherent Control of Femtosecond Energy Localization in Nanosystems. Physical Review Letters, 88(6). doi:10.1103/physrevlett.88.067402 es_ES
dc.description.references Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., Cunovic, S., Fischer, A., … Voronine, D. V. (2012). Optimal open-loop near-field control of plasmonic nanostructures. New Journal of Physics, 14(3), 033030. doi:10.1088/1367-2630/14/3/033030 es_ES
dc.description.references Sukharev, M., & Seideman, T. (2006). Phase and Polarization Control as a Route to Plasmonic Nanodevices. Nano Letters, 6(4), 715-719. doi:10.1021/nl0524896 es_ES
dc.description.references Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937 es_ES
dc.description.references Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630 es_ES
dc.description.references Kim, H., & Lee, B. (2009). Unidirectional Surface Plasmon Polariton Excitation on Single Slit with Oblique Backside Illumination. Plasmonics, 4(2), 153-159. doi:10.1007/s11468-009-9086-2 es_ES
dc.description.references Bonod, N., Popov, E., Li, L., & Chernov, B. (2007). Unidirectional excitation of surface plasmons by slanted gratings. Optics Express, 15(18), 11427. doi:10.1364/oe.15.011427 es_ES
dc.description.references Bouillard, J.-S., Vilain, S., Dickson, W., Wurtz, G. A., & Zayats, A. V. (2012). Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp. Scientific Reports, 2(1). doi:10.1038/srep00829 es_ES
dc.description.references Li, X., Tan, Q., Bai, B., & Jin, G. (2011). Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit. Applied Physics Letters, 98(25), 251109. doi:10.1063/1.3602322 es_ES
dc.description.references Radko, I. P., Bozhevolnyi, S. I., Brucoli, G., Martin-Moreno, L., Garcia-Vidal, F. J., & Boltasseva, A. (2009). Efficient unidirectional ridge excitation of surface plasmons. Optics Express, 17(9), 7228. doi:10.1364/oe.17.007228 es_ES
dc.description.references Liu, Y., Palomba, S., Park, Y., Zentgraf, T., Yin, X., & Zhang, X. (2012). Compact Magnetic Antennas for Directional Excitation of Surface Plasmons. Nano Letters, 12(9), 4853-4858. doi:10.1021/nl302339z es_ES
dc.description.references Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & van Hulst, N. F. (2010). Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science, 329(5994), 930-933. doi:10.1126/science.1191922 es_ES
dc.description.references Laroche, M., Arnold, C., Marquier, F., Carminati, R., Greffet, J.-J., Collin, S., … Pelouard, J.-L. (2005). Highly directional radiation generated by a tungsten thermal source. Optics Letters, 30(19), 2623. doi:10.1364/ol.30.002623 es_ES
dc.description.references Roelkens, G., Vermeulen, D., Van Laere, F., Selvaraja, S., Scheerlinck, S., Taillaert, D., … Baets, R. (2010). Bridging the Gap Between Nanophotonic Waveguide Circuits and Single Mode Optical Fibers Using Diffractive Grating Structures. Journal of Nanoscience and Nanotechnology, 10(3), 1551-1562. doi:10.1166/jnn.2010.2031 es_ES
dc.description.references Hansen, W. N. (1968). Electric Fields Produced by the Propagation of Plane Coherent Electromagnetic Radiation in a Stratified Medium. Journal of the Optical Society of America, 58(3), 380. doi:10.1364/josa.58.000380 es_ES
dc.description.references Rotenberg, N., Spasenović, M., Krijger, T. L., le Feber, B., García de Abajo, F. J., & Kuipers, L. (2012). Plasmon Scattering from Single Subwavelength Holes. Physical Review Letters, 108(12). doi:10.1103/physrevlett.108.127402 es_ES
dc.description.references Ruan, Z., & Fan, S. (2010). Superscattering of Light from Subwavelength Nanostructures. Physical Review Letters, 105(1). doi:10.1103/physrevlett.105.013901 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem