Mostrar el registro sencillo del ítem
dc.contributor.author | Benítez López, Julio | es_ES |
dc.contributor.author | Liu, Xiaoji | es_ES |
dc.contributor.author | Rakocevic, Vladimir | es_ES |
dc.date.accessioned | 2015-07-06T08:14:14Z | |
dc.date.available | 2015-07-06T08:14:14Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0308-1087 | |
dc.identifier.issn | 1563-5139 | |
dc.identifier.uri | http://hdl.handle.net/10251/52703 | |
dc.description.abstract | Let R be a ring and a, b is an element of R satisfy aba = a and bab = b. We characterize when ab - ba is invertible. This study is specialized when R has an involution and when b is the Moore-Penrose inverse of a. | es_ES |
dc.description.sponsorship | We would like to thank the referee for his/her careful reading. The first author is supported by Spanish Project MTM2010-18539, the second author is supported by the National Natural Science Foundation of China (11601005) and the Ministry of Education Science and Technology Key Project (210164) and the third author by the Ministry of Science, Technology and Development, Republic of Serbia under Grant No. 174025. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Linear and Multilinear Algebra | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ring | es_ES |
dc.subject | Involution | es_ES |
dc.subject | Generalized inverses | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Invertibility in rings of the commutator ab-ba, where aba=a and bab=b | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/03081087.2011.605064 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18539/ES/DISEÑO, ANALISIS Y OPTIMIZACION DE METODOS DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES. APLICACIONES A PROBLEMAS DE VALOR INICIAL Y FLUJO OPTICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174025/RS/Problems in Nonlinear analysis, Operator theory, Topology and applications/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//11601005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MOST//210164/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Benítez López, J.; Liu, X.; Rakocevic, V. (2012). Invertibility in rings of the commutator ab-ba, where aba=a and bab=b. Linear and Multilinear Algebra. 60(4):449-463. https://doi.org/10.1080/03081087.2011.605064 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/03081087.2011.605064 | es_ES |
dc.description.upvformatpinicio | 449 | es_ES |
dc.description.upvformatpfin | 463 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 222012 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministry of Science and Technology, China | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Ministry of Education, Science and Technological Development of the Republic of Serbia | |
dc.description.references | Baksalary, J. K., & Baksalary, O. M. (2004). Nonsingularity of linear combinationsof idempotent matrices. Linear Algebra and its Applications, 388, 25-29. doi:10.1016/j.laa.2004.02.025 | es_ES |
dc.description.references | Ben-Israel, A and Greville, TNE.Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974; 2nd ed., Springer, New York, 2002 | es_ES |
dc.description.references | Benítez, J. (2008). Moore–Penrose inverses and commuting elements of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>C</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math>-algebras. Journal of Mathematical Analysis and Applications, 345(2), 766-770. doi:10.1016/j.jmaa.2008.04.062 | es_ES |
dc.description.references | Benítez, J., & Rakočević, V. (2010). Matrices A such that AA†−A†A are nonsingular. Applied Mathematics and Computation, 217(7), 3493-3503. doi:10.1016/j.amc.2010.09.022 | es_ES |
dc.description.references | Benítez, J., & Rakočević, V. (2010). Invertibility of the commutator of an element in a C*-algebra and its Moore–Penrose inverse. Studia Mathematica, 200(2), 163-174. doi:10.4064/sm200-2-4 | es_ES |
dc.description.references | Buckholtz, D. (1997). Inverting the Difference of Hilbert Space Projections. The American Mathematical Monthly, 104(1), 60. doi:10.2307/2974825 | es_ES |
dc.description.references | Buckholtz, D. (2000). Proceedings of the American Mathematical Society, 128(05), 1415-1419. doi:10.1090/s0002-9939-99-05233-8 | es_ES |
dc.description.references | Gross, J., & Trenkler, G. (2000). Nonsingularity of the Difference of Two Oblique Projectors. SIAM Journal on Matrix Analysis and Applications, 21(2), 390-395. doi:10.1137/s0895479897320277 | es_ES |
dc.description.references | Koliha, J. J. (2000). Elements of C*-algebras commuting with their Moore-Penrose inverse. Studia Mathematica, 139(1), 81-90. doi:10.4064/sm-139-1-81-90 | es_ES |
dc.description.references | Koliha, J. J., & RakoČević, V. (2002). Invertibility of the Sum of Idempotents. Linear and Multilinear Algebra, 50(4), 285-292. doi:10.1080/03081080290004960 | es_ES |
dc.description.references | Koliha, J. J., & Rakočević, V. (2003). Invertibility of the Difference of Idempotents. Linear and Multilinear Algebra, 51(1), 97-110. doi:10.1080/030810802100023499 | es_ES |
dc.description.references | Koliha, J. J., & Rakočević, V. (2004). On the Norm of Idempotents in $C^*$ -Algebras. Rocky Mountain Journal of Mathematics, 34(2), 685-697. doi:10.1216/rmjm/1181069874 | es_ES |
dc.description.references | Koliha, J. ., Rakočević, V., & Straškraba, I. (2004). The difference and sum of projectors. Linear Algebra and its Applications, 388, 279-288. doi:10.1016/j.laa.2004.03.008 | es_ES |
dc.description.references | Koliha, J. J., & Rakočević, V. (2006). The nullity and rank of linear combinations of idempotent matrices. Linear Algebra and its Applications, 418(1), 11-14. doi:10.1016/j.laa.2006.01.011 | es_ES |
dc.description.references | Koliha, J. J., & RakoČević, V. (2007). Range projections and the Moore–Penrose inverse in rings with involution. Linear and Multilinear Algebra, 55(2), 103-112. doi:10.1080/03081080500472954 | es_ES |