- -

Invertibility in rings of the commutator ab-ba, where aba=a and bab=b

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Invertibility in rings of the commutator ab-ba, where aba=a and bab=b

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benítez López, Julio es_ES
dc.contributor.author Liu, Xiaoji es_ES
dc.contributor.author Rakocevic, Vladimir es_ES
dc.date.accessioned 2015-07-06T08:14:14Z
dc.date.available 2015-07-06T08:14:14Z
dc.date.issued 2012
dc.identifier.issn 0308-1087
dc.identifier.issn 1563-5139
dc.identifier.uri http://hdl.handle.net/10251/52703
dc.description.abstract Let R be a ring and a, b is an element of R satisfy aba = a and bab = b. We characterize when ab - ba is invertible. This study is specialized when R has an involution and when b is the Moore-Penrose inverse of a. es_ES
dc.description.sponsorship We would like to thank the referee for his/her careful reading. The first author is supported by Spanish Project MTM2010-18539, the second author is supported by the National Natural Science Foundation of China (11601005) and the Ministry of Education Science and Technology Key Project (210164) and the third author by the Ministry of Science, Technology and Development, Republic of Serbia under Grant No. 174025. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Linear and Multilinear Algebra es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ring es_ES
dc.subject Involution es_ES
dc.subject Generalized inverses es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Invertibility in rings of the commutator ab-ba, where aba=a and bab=b es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/03081087.2011.605064
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18539/ES/DISEÑO, ANALISIS Y OPTIMIZACION DE METODOS DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES. APLICACIONES A PROBLEMAS DE VALOR INICIAL Y FLUJO OPTICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174025/RS/Problems in Nonlinear analysis, Operator theory, Topology and applications/
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11601005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MOST//210164/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Benítez López, J.; Liu, X.; Rakocevic, V. (2012). Invertibility in rings of the commutator ab-ba, where aba=a and bab=b. Linear and Multilinear Algebra. 60(4):449-463. https://doi.org/10.1080/03081087.2011.605064 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/03081087.2011.605064 es_ES
dc.description.upvformatpinicio 449 es_ES
dc.description.upvformatpfin 463 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 222012
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministry of Science and Technology, China es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministry of Education, Science and Technological Development of the Republic of Serbia
dc.description.references Baksalary, J. K., & Baksalary, O. M. (2004). Nonsingularity of linear combinationsof idempotent matrices. Linear Algebra and its Applications, 388, 25-29. doi:10.1016/j.laa.2004.02.025 es_ES
dc.description.references Ben-Israel, A and Greville, TNE.Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974; 2nd ed., Springer, New York, 2002 es_ES
dc.description.references Benítez, J. (2008). Moore–Penrose inverses and commuting elements of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>C</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math>-algebras. Journal of Mathematical Analysis and Applications, 345(2), 766-770. doi:10.1016/j.jmaa.2008.04.062 es_ES
dc.description.references Benítez, J., & Rakočević, V. (2010). Matrices A such that AA†−A†A are nonsingular. Applied Mathematics and Computation, 217(7), 3493-3503. doi:10.1016/j.amc.2010.09.022 es_ES
dc.description.references Benítez, J., & Rakočević, V. (2010). Invertibility of the commutator of an element in a C*-algebra and its Moore–Penrose inverse. Studia Mathematica, 200(2), 163-174. doi:10.4064/sm200-2-4 es_ES
dc.description.references Buckholtz, D. (1997). Inverting the Difference of Hilbert Space Projections. The American Mathematical Monthly, 104(1), 60. doi:10.2307/2974825 es_ES
dc.description.references Buckholtz, D. (2000). Proceedings of the American Mathematical Society, 128(05), 1415-1419. doi:10.1090/s0002-9939-99-05233-8 es_ES
dc.description.references Gross, J., & Trenkler, G. (2000). Nonsingularity of the Difference of Two Oblique Projectors. SIAM Journal on Matrix Analysis and Applications, 21(2), 390-395. doi:10.1137/s0895479897320277 es_ES
dc.description.references Koliha, J. J. (2000). Elements of C*-algebras commuting with their Moore-Penrose inverse. Studia Mathematica, 139(1), 81-90. doi:10.4064/sm-139-1-81-90 es_ES
dc.description.references Koliha, J. J., & RakoČević, V. (2002). Invertibility of the Sum of Idempotents. Linear and Multilinear Algebra, 50(4), 285-292. doi:10.1080/03081080290004960 es_ES
dc.description.references Koliha, J. J., & Rakočević, V. (2003). Invertibility of the Difference of Idempotents. Linear and Multilinear Algebra, 51(1), 97-110. doi:10.1080/030810802100023499 es_ES
dc.description.references Koliha, J. J., & Rakočević, V. (2004). On the Norm of Idempotents in $C^*$ -Algebras. Rocky Mountain Journal of Mathematics, 34(2), 685-697. doi:10.1216/rmjm/1181069874 es_ES
dc.description.references Koliha, J. ., Rakočević, V., & Straškraba, I. (2004). The difference and sum of projectors. Linear Algebra and its Applications, 388, 279-288. doi:10.1016/j.laa.2004.03.008 es_ES
dc.description.references Koliha, J. J., & Rakočević, V. (2006). The nullity and rank of linear combinations of idempotent matrices. Linear Algebra and its Applications, 418(1), 11-14. doi:10.1016/j.laa.2006.01.011 es_ES
dc.description.references Koliha, J. J., & RakoČević, V. (2007). Range projections and the Moore–Penrose inverse in rings with involution. Linear and Multilinear Algebra, 55(2), 103-112. doi:10.1080/03081080500472954 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem