Mostrar el registro sencillo del ítem
dc.contributor.author | Sas, Bart | es_ES |
dc.contributor.author | Bernal Mor, Elena | es_ES |
dc.contributor.author | Spaey, Kathleen | es_ES |
dc.contributor.author | Pla, Vicent | es_ES |
dc.contributor.author | Blondia, Chris | es_ES |
dc.contributor.author | Martínez Bauset, Jorge | es_ES |
dc.date.accessioned | 2015-07-07T09:28:24Z | |
dc.date.available | 2015-07-07T09:28:24Z | |
dc.date.issued | 2014-02 | |
dc.identifier.issn | 1018-4864 | |
dc.identifier.uri | http://hdl.handle.net/10251/52773 | |
dc.description.abstract | In wireless orthogonal frequency-division multiple access (OFDMA) based networks like Long Term Evolution (LTE) or Worldwide Interoperability for Microwave Access (WiMAX) a technique called adaptive modulation and coding (AMC) is applied. With AMC, different modulation and coding schemes (MCSs) are used to serve different users in order to maximise the throughput and range. The used MCS depends on the quality of the radio link between the base station and the user. Data is sent towards users with a good radio link with a high MCS in order to utilise the radio resources more efficiently while a low MCS is used for users with a bad radio link. Using AMC however has an impact on the cell capacity as the quality of a radio link varies when users move around; this can even lead to situations where the cell capacity drops to a point where there are too little radio resources to serve all users. AMC and the resulting varying cell capacity notably has an influence on admission control (AC). AC is the algorithm that decides whether new sessions are allowed to a cell or not and bases its decisions on, amongst others, the cell capacity. The analytical model that is developed in this paper models a cell with varying capacity caused by user mobility using a continuous -time Markov chain (CTMC). The cell is divided into multiple zones, each corresponding to the area in which data is sent towards users using a certain MCS and transitions of users between these zones are considered. The accuracy of the analytical model is verified by comparing the results obtained with it to results obtained from simulations that model the user mobility more realistically. This comparison shows that the analytical model models the varying cell capacity very accurately; only under extreme conditions differences between the results are noticed. The developed analytical and simulation models are then used to investigate the effects of a varying cell capacity on AC. Also, an optimisation algorithm that adapts the parameter of the AC algorithm which determines the amount of resources that are reserved in order to mitigate the effects of the varying cell capacity is studied using the models. Updating the parameter of the AC algorithm is done by reacting to certain triggers that indicate good or bad performance and adapt the parameters of the AC algorithm accordingly. Results show that using this optimisation algorithm improves the quality of service (QoS) that is experienced by the users. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish Government through project TIN2010-21378-C02-02 and contract BES-2007-15030. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Telecommunication Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | LTE | es_ES |
dc.subject | Time-varying cell capacity | es_ES |
dc.subject | Quality of Service | es_ES |
dc.subject | Admission control optimisation | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Modelling the time-varying cell capacity in LTE networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11235-013-9782-2 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-21378-C02-02/ES/COOPERACION Y OPORTUNISMO EN REDES DE ACCESO INALAMBRICAS Y HETEROGENEAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//BES-2007-15030/ES/BES-2007-15030/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Sas, B.; Bernal Mor, E.; Spaey, K.; Pla, V.; Blondia, C.; Martínez Bauset, J. (2014). Modelling the time-varying cell capacity in LTE networks. Telecommunication Systems. 55(2):299-313. https://doi.org/10.1007/s11235-013-9782-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11235-013-9782-2 | es_ES |
dc.description.upvformatpinicio | 299 | es_ES |
dc.description.upvformatpfin | 313 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 252795 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | 3GPP (2010). 3GPP TR 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Physical layer procedures, June 2010. | es_ES |
dc.description.references | 3GPP (2010). 3GPP TR 36.942: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Radio Frequency (RF) system scenarios, September 2010. | es_ES |
dc.description.references | Al-Rawi, M., & Jäntti, R. (2009). Call admission control with active link protection for opportunistic wireless networks. Telecommunications Systems, 41(1), 13–23. | es_ES |
dc.description.references | Bhatnagar, S., & Reddy, B.B.I. (2005). Optimal threshold policies for admission control in communication networks via discrete parameter stochastic approximation. Telecommunications Systems, 29(1), 9–31. | es_ES |
dc.description.references | Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502. | es_ES |
dc.description.references | E3. ict-e3.eu. | es_ES |
dc.description.references | Elayoubi, S.-E., & Chahed, T. (2005). Admission control in the downlink of WCDMA/UMTS. In LNCS: Vol. 3427. Mobile and wireless systems (pp. 136–151). | es_ES |
dc.description.references | Garcia, D., Martinez, J., & Pla, V. (2005). Admission control policies in multiservice cellular networks: optimum configuration and sensitivity. In G. Kotsis, & O. Spaniol (Eds.), Lecture notes in computer science: Vol. 3427. Wireless systems and mobility in next generation Internet (pp. 121–135). | es_ES |
dc.description.references | Guo, J., Liu, F., & Zhu, Z. (2007). Estimate the call duration distribution parameters in GSM system based on K-L divergence method. In International conference on wireless communications, networking and mobile computing (pp. 2988–2991), Shanghai, China, September 2007. | es_ES |
dc.description.references | Hossain, M., Hassan, M., & Sirisena, H. R. (2004). Adaptive resource management in mobile wireless networks using feedback control theory. Telecommunications Systems, 24(3–4), 401–415. | es_ES |
dc.description.references | Jeong, S.S., Han, J.A., & Jeon, W.S. (2005). Adaptive connection admission control scheme for high data rate mobile networks. In IEEE 62nd Vehicular technology conference, 2005. VTC-2005-Fall (Vol. 4, pp. 2607–2611). | es_ES |
dc.description.references | Kim, D.K., Griffith, D., & Golmie, N. (2010). A novel ring-based performance analysis for call admission control in wireless networks. IEEE Communications Letters, 14(4), 324–326. | es_ES |
dc.description.references | Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM. Baltimore: Philadelphia. | es_ES |
dc.description.references | MONOTAS. http://www.macltd.com/monotas . | es_ES |
dc.description.references | Neuts, M. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach. Baltimore: The Johns Hopkins University Press. | es_ES |
dc.description.references | NGMN. NGMN Radio Access Performance Evaluation Methodology, January 2008. | es_ES |
dc.description.references | NGMN. www.ngmn.org . | es_ES |
dc.description.references | Prehofer, C., & Bettstetter, C. (2005). Self-organization in communication networks: principles and design paradigms. IEEE Communications Magazine, 43(7), 78–85. | es_ES |
dc.description.references | Ramjee, R., Nagarajan, R., & Towsley, D. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3(1), 29–41. | es_ES |
dc.description.references | Siwko, J., & Rubin, I. (2001). Call admission control for capacity-varying networks. Telecommunications Systems, 16(1–2), 15–40. | es_ES |
dc.description.references | SOCRATES. www.fp7-socrates.eu . | es_ES |
dc.description.references | Spaey, K., Sas, B., & Blondia, C. (2010). Self-optimising call admission control for LTE downlink. In COST 2100 TD(10)10056, Joint Workshop COST 2100 SWG 3.1 & FP7-ICT-SOCRATES, Athens, Greece. | es_ES |
dc.description.references | Spilling, A. G., Nix, A. R., Beach, M. A., & Harrold, T. J. (2000). Self-organisation in future mobile communications. Electronics & Communication Engineering Journal, 3, 133. | es_ES |