- -

Modelling the time-varying cell capacity in LTE networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling the time-varying cell capacity in LTE networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sas, Bart es_ES
dc.contributor.author Bernal Mor, Elena es_ES
dc.contributor.author Spaey, Kathleen es_ES
dc.contributor.author Pla, Vicent es_ES
dc.contributor.author Blondia, Chris es_ES
dc.contributor.author Martínez Bauset, Jorge es_ES
dc.date.accessioned 2015-07-07T09:28:24Z
dc.date.available 2015-07-07T09:28:24Z
dc.date.issued 2014-02
dc.identifier.issn 1018-4864
dc.identifier.uri http://hdl.handle.net/10251/52773
dc.description.abstract In wireless orthogonal frequency-division multiple access (OFDMA) based networks like Long Term Evolution (LTE) or Worldwide Interoperability for Microwave Access (WiMAX) a technique called adaptive modulation and coding (AMC) is applied. With AMC, different modulation and coding schemes (MCSs) are used to serve different users in order to maximise the throughput and range. The used MCS depends on the quality of the radio link between the base station and the user. Data is sent towards users with a good radio link with a high MCS in order to utilise the radio resources more efficiently while a low MCS is used for users with a bad radio link. Using AMC however has an impact on the cell capacity as the quality of a radio link varies when users move around; this can even lead to situations where the cell capacity drops to a point where there are too little radio resources to serve all users. AMC and the resulting varying cell capacity notably has an influence on admission control (AC). AC is the algorithm that decides whether new sessions are allowed to a cell or not and bases its decisions on, amongst others, the cell capacity. The analytical model that is developed in this paper models a cell with varying capacity caused by user mobility using a continuous -time Markov chain (CTMC). The cell is divided into multiple zones, each corresponding to the area in which data is sent towards users using a certain MCS and transitions of users between these zones are considered. The accuracy of the analytical model is verified by comparing the results obtained with it to results obtained from simulations that model the user mobility more realistically. This comparison shows that the analytical model models the varying cell capacity very accurately; only under extreme conditions differences between the results are noticed. The developed analytical and simulation models are then used to investigate the effects of a varying cell capacity on AC. Also, an optimisation algorithm that adapts the parameter of the AC algorithm which determines the amount of resources that are reserved in order to mitigate the effects of the varying cell capacity is studied using the models. Updating the parameter of the AC algorithm is done by reacting to certain triggers that indicate good or bad performance and adapt the parameters of the AC algorithm accordingly. Results show that using this optimisation algorithm improves the quality of service (QoS) that is experienced by the users. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Government through project TIN2010-21378-C02-02 and contract BES-2007-15030. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Telecommunication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject LTE es_ES
dc.subject Time-varying cell capacity es_ES
dc.subject Quality of Service es_ES
dc.subject Admission control optimisation es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Modelling the time-varying cell capacity in LTE networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11235-013-9782-2
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-21378-C02-02/ES/COOPERACION Y OPORTUNISMO EN REDES DE ACCESO INALAMBRICAS Y HETEROGENEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BES-2007-15030/ES/BES-2007-15030/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sas, B.; Bernal Mor, E.; Spaey, K.; Pla, V.; Blondia, C.; Martínez Bauset, J. (2014). Modelling the time-varying cell capacity in LTE networks. Telecommunication Systems. 55(2):299-313. https://doi.org/10.1007/s11235-013-9782-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11235-013-9782-2 es_ES
dc.description.upvformatpinicio 299 es_ES
dc.description.upvformatpfin 313 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 252795
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references 3GPP (2010). 3GPP TR 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Physical layer procedures, June 2010. es_ES
dc.description.references 3GPP (2010). 3GPP TR 36.942: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Radio Frequency (RF) system scenarios, September 2010. es_ES
dc.description.references Al-Rawi, M., & Jäntti, R. (2009). Call admission control with active link protection for opportunistic wireless networks. Telecommunications Systems, 41(1), 13–23. es_ES
dc.description.references Bhatnagar, S., & Reddy, B.B.I. (2005). Optimal threshold policies for admission control in communication networks via discrete parameter stochastic approximation. Telecommunications Systems, 29(1), 9–31. es_ES
dc.description.references Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502. es_ES
dc.description.references E3. ict-e3.eu. es_ES
dc.description.references Elayoubi, S.-E., & Chahed, T. (2005). Admission control in the downlink of WCDMA/UMTS. In LNCS: Vol. 3427. Mobile and wireless systems (pp. 136–151). es_ES
dc.description.references Garcia, D., Martinez, J., & Pla, V. (2005). Admission control policies in multiservice cellular networks: optimum configuration and sensitivity. In G. Kotsis, & O. Spaniol (Eds.), Lecture notes in computer science: Vol. 3427. Wireless systems and mobility in next generation Internet (pp. 121–135). es_ES
dc.description.references Guo, J., Liu, F., & Zhu, Z. (2007). Estimate the call duration distribution parameters in GSM system based on K-L divergence method. In International conference on wireless communications, networking and mobile computing (pp. 2988–2991), Shanghai, China, September 2007. es_ES
dc.description.references Hossain, M., Hassan, M., & Sirisena, H. R. (2004). Adaptive resource management in mobile wireless networks using feedback control theory. Telecommunications Systems, 24(3–4), 401–415. es_ES
dc.description.references Jeong, S.S., Han, J.A., & Jeon, W.S. (2005). Adaptive connection admission control scheme for high data rate mobile networks. In IEEE 62nd Vehicular technology conference, 2005. VTC-2005-Fall (Vol. 4, pp. 2607–2611). es_ES
dc.description.references Kim, D.K., Griffith, D., & Golmie, N. (2010). A novel ring-based performance analysis for call admission control in wireless networks. IEEE Communications Letters, 14(4), 324–326. es_ES
dc.description.references Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM. Baltimore: Philadelphia. es_ES
dc.description.references MONOTAS. http://www.macltd.com/monotas . es_ES
dc.description.references Neuts, M. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach. Baltimore: The Johns Hopkins University Press. es_ES
dc.description.references NGMN. NGMN Radio Access Performance Evaluation Methodology, January 2008. es_ES
dc.description.references NGMN. www.ngmn.org . es_ES
dc.description.references Prehofer, C., & Bettstetter, C. (2005). Self-organization in communication networks: principles and design paradigms. IEEE Communications Magazine, 43(7), 78–85. es_ES
dc.description.references Ramjee, R., Nagarajan, R., & Towsley, D. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3(1), 29–41. es_ES
dc.description.references Siwko, J., & Rubin, I. (2001). Call admission control for capacity-varying networks. Telecommunications Systems, 16(1–2), 15–40. es_ES
dc.description.references SOCRATES. www.fp7-socrates.eu . es_ES
dc.description.references Spaey, K., Sas, B., & Blondia, C. (2010). Self-optimising call admission control for LTE downlink. In COST 2100 TD(10)10056, Joint Workshop COST 2100 SWG 3.1 & FP7-ICT-SOCRATES, Athens, Greece. es_ES
dc.description.references Spilling, A. G., Nix, A. R., Beach, M. A., & Harrold, T. J. (2000). Self-organisation in future mobile communications. Electronics & Communication Engineering Journal, 3, 133. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem