Mostrar el registro sencillo del ítem
dc.contributor.author | Benítez López, Julio | es_ES |
dc.contributor.author | Liu, Xiaoji | es_ES |
dc.contributor.author | Zhu, Tongping | es_ES |
dc.date.accessioned | 2015-07-08T10:39:29Z | |
dc.date.available | 2015-07-08T10:39:29Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0308-1087 | |
dc.identifier.issn | 1563-5139 | |
dc.identifier.uri | http://hdl.handle.net/10251/52821 | |
dc.description.abstract | We derive a very short expression for the group inverse of a(1) + ... + a(n) when a(1), ... , a(n) are elements in an algebra having group inverse and satisfying a(i)a(j) = 0 for i < j. We apply this formula in order to find the group inverse of 2 x 2 block operators under some conditions. (C) 2011 Taylor & Francis | es_ES |
dc.description.sponsorship | X. Liu and T. Zhu are supported by Guangxi Science Foundation (0640016, 0832084). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Linear and Multilinear Algebra | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Algebra | es_ES |
dc.subject | Block operators | es_ES |
dc.subject | Group inverse | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Additive results for the group inverse in an algebra with applications to block operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/03081080903410262 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangxi Province//0640016/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Guangxi Province//0832084/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Benítez López, J.; Liu, X.; Zhu, T. (2011). Additive results for the group inverse in an algebra with applications to block operators. Linear and Multilinear Algebra. 59(3):279-289. https://doi.org/10.1080/03081080903410262 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/03081080903410262 | es_ES |
dc.description.upvformatpinicio | 279 | es_ES |
dc.description.upvformatpfin | 289 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 193345 | |
dc.contributor.funder | Natural Science Foundation of Guangxi Province | es_ES |
dc.description.references | Benítez, J. (2008). Moore–Penrose inverses and commuting elements of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>C</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math>-algebras. Journal of Mathematical Analysis and Applications, 345(2), 766-770. doi:10.1016/j.jmaa.2008.04.062 | es_ES |
dc.description.references | Benítez, J, Liu, X and Zhu, T.Nonsingularity and group invertibility of linear combinations of two k-potent matrices, Linear Multilinear Algebra (accepted) | es_ES |
dc.description.references | Castro-González, N., Dopazo, E., & Martínez-Serrano, M. F. (2009). On the Drazin inverse of the sum of two operators and its application to operator matrices. Journal of Mathematical Analysis and Applications, 350(1), 207-215. doi:10.1016/j.jmaa.2008.09.035 | es_ES |
dc.description.references | González, N. C., & Koliha, J. J. (2004). New additive results for the g-Drazin inverse. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 134(6), 1085-1097. doi:10.1017/s0308210500003632 | es_ES |
dc.description.references | Cvetković-Ilić, D. S., Djordjević, D. S., & Wei, Y. (2006). Additive results for the generalized Drazin inverse in a Banach algebra. Linear Algebra and its Applications, 418(1), 53-61. doi:10.1016/j.laa.2006.01.015 | es_ES |
dc.description.references | Deng, C. Y. (2009). The Drazin inverses of sum and difference of idempotents. Linear Algebra and its Applications, 430(4), 1282-1291. doi:10.1016/j.laa.2008.10.017 | es_ES |
dc.description.references | Deng, C, Cvetković-Ilić, DS and Wei, Y.Some results on the generalized Drazin inverse of operator matrices, Linear Multilinear Algebra (2009). DOI: 10.1080/03081080902722642 | es_ES |
dc.description.references | Djordjević, D. S., & Wei, Y. (2002). Additive results for the generalized Drazin inverse. Journal of the Australian Mathematical Society, 73(1), 115-126. doi:10.1017/s1446788700008508 | es_ES |
dc.description.references | Hartwig, R. E., Wang, G., & Wei, Y. (2001). Some additive results on Drazin inverse. Linear Algebra and its Applications, 322(1-3), 207-217. doi:10.1016/s0024-3795(00)00257-3 | es_ES |
dc.description.references | Koliha, J. J. (2000). Elements of C*-algebras commuting with their Moore-Penrose inverse. Studia Mathematica, 139(1), 81-90. doi:10.4064/sm-139-1-81-90 | es_ES |