Mostrar el registro sencillo del ítem
dc.contributor.author | Benítez López, Julio | es_ES |
dc.contributor.author | Sarduvan, Murat | es_ES |
dc.contributor.author | Ülker, Sedat | es_ES |
dc.contributor.author | Özdemir, Halim | es_ES |
dc.date.accessioned | 2015-07-08T11:12:10Z | |
dc.date.available | 2015-07-08T11:12:10Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0308-1087 | |
dc.identifier.issn | 1563-5139 | |
dc.identifier.uri | http://hdl.handle.net/10251/52827 | |
dc.description.abstract | Let T=c1T1+c2T2+c3T3- c4(T1T2+T3T1+T2T3), where T1, T2, T3 are three n x n tripotent matrices and c1, c2, c3, c4 are complex numbers with c1, c2, c3 nonzero. In this article, necessary and sufficient conditions for the nonsingularity of such combinations are established and some formulae for the inverses of them are obtained. Some of these results are given in terms of group invertible matrices. | es_ES |
dc.description.sponsorship | We would like to thank the referee for his/her careful reading. The first author was supported by the Vicerrectorado de Investigacion U.P.V. PAID 06-2010-2285. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Linear and Multilinear Algebra | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonsingularity | es_ES |
dc.subject | Tripotent matrix | es_ES |
dc.subject | Group invertible matrix | es_ES |
dc.subject | Diagonalization | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On nonsingularity of combinations of three group invertible matrices and three tripotent matrices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/03081087.2012.689986 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-2010-2285/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Benítez López, J.; Sarduvan, M.; Ülker, S.; Özdemir, H. (2013). On nonsingularity of combinations of three group invertible matrices and three tripotent matrices. Linear and Multilinear Algebra. 61(4):463-481. https://doi.org/10.1080/03081087.2012.689986 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/03081087.2012.689986 | es_ES |
dc.description.upvformatpinicio | 463 | es_ES |
dc.description.upvformatpfin | 481 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 61 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 231562 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Baksalary, J. K., & Baksalary, O. M. (2004). Nonsingularity of linear combinationsof idempotent matrices. Linear Algebra and its Applications, 388, 25-29. doi:10.1016/j.laa.2004.02.025 | es_ES |
dc.description.references | Baksalary, J. K., Baksalary, O. M., & Özdemir, H. (2004). A note on linear combinations of commuting tripotent matrices. Linear Algebra and its Applications, 388, 45-51. doi:10.1016/j.laa.2004.01.011 | es_ES |
dc.description.references | Benítez, J., Liu, X., & Zhu, T. (2010). Nonsingularity and group invertibility of linear combinations of twok-potent matrices. Linear and Multilinear Algebra, 58(8), 1023-1035. doi:10.1080/03081080903207932 | es_ES |
dc.description.references | Benítez, J., & Thome, N. (2006). {k}-Group Periodic Matrices. SIAM Journal on Matrix Analysis and Applications, 28(1), 9-25. doi:10.1137/s0895479803437384 | es_ES |
dc.description.references | Gross, J., & Trenkler, G. (2000). Nonsingularity of the Difference of Two Oblique Projectors. SIAM Journal on Matrix Analysis and Applications, 21(2), 390-395. doi:10.1137/s0895479897320277 | es_ES |
dc.description.references | Horn, R. A., & Johnson, C. R. (1985). Matrix Analysis. doi:10.1017/cbo9780511810817 | es_ES |
dc.description.references | Koliha, J. J., & Rakočević, V. (2006). The nullity and rank of linear combinations of idempotent matrices. Linear Algebra and its Applications, 418(1), 11-14. doi:10.1016/j.laa.2006.01.011 | es_ES |
dc.description.references | Koliha, J. ., Rakočević, V., & Straškraba, I. (2004). The difference and sum of projectors. Linear Algebra and its Applications, 388, 279-288. doi:10.1016/j.laa.2004.03.008 | es_ES |
dc.description.references | Liu, X., Wu, S., & Benítez, J. (2011). On nonsingularity of combinations of two group invertible matrices and two tripotent matrices. Linear and Multilinear Algebra, 59(12), 1409-1417. doi:10.1080/03081087.2011.558843 | es_ES |
dc.description.references | Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra. doi:10.1137/1.9780898719512 | es_ES |
dc.description.references | Mitra, S. K. (1987). On group inverses and the sharp order. Linear Algebra and its Applications, 92, 17-37. doi:10.1016/0024-3795(87)90248-5 | es_ES |
dc.description.references | Mitra, S. K., & Bhimasankaram, P. (2010). MATRIX PARTIAL ORDERS, SHORTED OPERATORS AND APPLICATIONS. SERIES IN ALGEBRA. doi:10.1142/9789812838452 | es_ES |
dc.description.references | Zhang, F. (1999). Matrix Theory. Universitext. doi:10.1007/978-1-4757-5797-2 | es_ES |
dc.description.references | Zuo, K. (2010). Nonsingularity of the difference and the sum of two idempotent matrices. Linear Algebra and its Applications, 433(2), 476-482. doi:10.1016/j.laa.2010.03.013 | es_ES |