- -

On nonsingularity of combinations of three group invertible matrices and three tripotent matrices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On nonsingularity of combinations of three group invertible matrices and three tripotent matrices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benítez López, Julio es_ES
dc.contributor.author Sarduvan, Murat es_ES
dc.contributor.author Ülker, Sedat es_ES
dc.contributor.author Özdemir, Halim es_ES
dc.date.accessioned 2015-07-08T11:12:10Z
dc.date.available 2015-07-08T11:12:10Z
dc.date.issued 2013
dc.identifier.issn 0308-1087
dc.identifier.issn 1563-5139
dc.identifier.uri http://hdl.handle.net/10251/52827
dc.description.abstract Let T=c1T1+c2T2+c3T3- c4(T1T2+T3T1+T2T3), where T1, T2, T3 are three n x n tripotent matrices and c1, c2, c3, c4 are complex numbers with c1, c2, c3 nonzero. In this article, necessary and sufficient conditions for the nonsingularity of such combinations are established and some formulae for the inverses of them are obtained. Some of these results are given in terms of group invertible matrices. es_ES
dc.description.sponsorship We would like to thank the referee for his/her careful reading. The first author was supported by the Vicerrectorado de Investigacion U.P.V. PAID 06-2010-2285. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Linear and Multilinear Algebra es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonsingularity es_ES
dc.subject Tripotent matrix es_ES
dc.subject Group invertible matrix es_ES
dc.subject Diagonalization es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On nonsingularity of combinations of three group invertible matrices and three tripotent matrices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/03081087.2012.689986
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-2010-2285/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Benítez López, J.; Sarduvan, M.; Ülker, S.; Özdemir, H. (2013). On nonsingularity of combinations of three group invertible matrices and three tripotent matrices. Linear and Multilinear Algebra. 61(4):463-481. https://doi.org/10.1080/03081087.2012.689986 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/03081087.2012.689986 es_ES
dc.description.upvformatpinicio 463 es_ES
dc.description.upvformatpfin 481 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 231562
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Baksalary, J. K., & Baksalary, O. M. (2004). Nonsingularity of linear combinationsof idempotent matrices. Linear Algebra and its Applications, 388, 25-29. doi:10.1016/j.laa.2004.02.025 es_ES
dc.description.references Baksalary, J. K., Baksalary, O. M., & Özdemir, H. (2004). A note on linear combinations of commuting tripotent matrices. Linear Algebra and its Applications, 388, 45-51. doi:10.1016/j.laa.2004.01.011 es_ES
dc.description.references Benítez, J., Liu, X., & Zhu, T. (2010). Nonsingularity and group invertibility of linear combinations of twok-potent matrices. Linear and Multilinear Algebra, 58(8), 1023-1035. doi:10.1080/03081080903207932 es_ES
dc.description.references Benítez, J., & Thome, N. (2006). {k}-Group Periodic Matrices. SIAM Journal on Matrix Analysis and Applications, 28(1), 9-25. doi:10.1137/s0895479803437384 es_ES
dc.description.references Gross, J., & Trenkler, G. (2000). Nonsingularity of the Difference of Two Oblique Projectors. SIAM Journal on Matrix Analysis and Applications, 21(2), 390-395. doi:10.1137/s0895479897320277 es_ES
dc.description.references Horn, R. A., & Johnson, C. R. (1985). Matrix Analysis. doi:10.1017/cbo9780511810817 es_ES
dc.description.references Koliha, J. J., & Rakočević, V. (2006). The nullity and rank of linear combinations of idempotent matrices. Linear Algebra and its Applications, 418(1), 11-14. doi:10.1016/j.laa.2006.01.011 es_ES
dc.description.references Koliha, J. ., Rakočević, V., & Straškraba, I. (2004). The difference and sum of projectors. Linear Algebra and its Applications, 388, 279-288. doi:10.1016/j.laa.2004.03.008 es_ES
dc.description.references Liu, X., Wu, S., & Benítez, J. (2011). On nonsingularity of combinations of two group invertible matrices and two tripotent matrices. Linear and Multilinear Algebra, 59(12), 1409-1417. doi:10.1080/03081087.2011.558843 es_ES
dc.description.references Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra. doi:10.1137/1.9780898719512 es_ES
dc.description.references Mitra, S. K. (1987). On group inverses and the sharp order. Linear Algebra and its Applications, 92, 17-37. doi:10.1016/0024-3795(87)90248-5 es_ES
dc.description.references Mitra, S. K., & Bhimasankaram, P. (2010). MATRIX PARTIAL ORDERS, SHORTED OPERATORS AND APPLICATIONS. SERIES IN ALGEBRA. doi:10.1142/9789812838452 es_ES
dc.description.references Zhang, F. (1999). Matrix Theory. Universitext. doi:10.1007/978-1-4757-5797-2 es_ES
dc.description.references Zuo, K. (2010). Nonsingularity of the difference and the sum of two idempotent matrices. Linear Algebra and its Applications, 433(2), 476-482. doi:10.1016/j.laa.2010.03.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem