Mostrar el registro sencillo del ítem
dc.contributor.author | Cirugeda Roldán, Eva María | es_ES |
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.contributor.author | Miró Martínez, Pau | es_ES |
dc.contributor.author | Oltra Crespo, Sandra | es_ES |
dc.contributor.author | Vigil-Medina, L. | es_ES |
dc.contributor.author | Varela-Entrecanales, M. | es_ES |
dc.date.accessioned | 2015-07-09T12:27:38Z | |
dc.date.available | 2015-07-09T12:27:38Z | |
dc.date.issued | 2014-05 | |
dc.identifier.issn | 0169-2607 | |
dc.identifier.uri | http://hdl.handle.net/10251/52894 | |
dc.description.abstract | [EN] This paper describes a new method to optimize the computation of the quadratic sample entropy (QSE) metric. The objective is to enhance its segmentation capability between pathological and healthy subjects for short and unevenly sampled biomedical records, like those obtained using ambulatory blood pressure monitoring (ABPM). In ABPM, blood pressure is measured every 20-30 min during 24h while patients undergo normal daily activities. ABPM is indicated for a number of applications such as white-coat, suspected, borderline, or masked hypertension. Hypertension is a very important clinical issue that can lead to serious health implications, and therefore its identification and characterization is of paramount importance. Nonlinear processing of signals by means of entropy calculation algorithms has been used in many medical applications to distinguish among signal classes. However, most of these methods do not perform well if the records are not long enough and/or not uniformly sampled. That is the case for ABPM records. These signals are extremely short and scattered with outliers or missing/resampled data. This is why ABPM Blood pressure signal screening using nonlinear methods is a quite unexplored field. We propose an additional stage for the computation of QSE independently of its parameter r and the input signal length. This enabled us to apply a segmentation process to ABPM records successfully. The experimental dataset consisted of 61 blood pressure data records of control and pathological subjects with only 52 samples per time series. The entropy estimation values obtained led to the segmentation of the two groups, while other standard nonlinear methods failed. (C) 2014 Elsevier Ireland Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministry of Science and Innovation, research project TEC2009-14222. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Quadratic sample entropy | es_ES |
dc.subject | Blood pressure time series | es_ES |
dc.subject | Biosignal classification | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2014.02.008 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2009-14222/ES/Interpretacion Y Caracterizacion De Metodos De Analisis De Complejidad En El Contexto Del Procesado Biomedico De La Señal/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.description.bibliographicCitation | Cirugeda Roldán, EM.; Cuesta Frau, D.; Miró Martínez, P.; Oltra Crespo, S.; Vigil-Medina, L.; Varela-Entrecanales, M. (2014). A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records. Computer Methods and Programs in Biomedicine. 114(3):231-239. https://doi.org/10.1016/j.cmpb.2014.02.008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.cmpb.2014.02.008 | es_ES |
dc.description.upvformatpinicio | 231 | es_ES |
dc.description.upvformatpfin | 239 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 114 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 280185 | |
dc.identifier.eissn | 1872-7565 | |
dc.identifier.pmid | 24685244 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación |