- -

Enhanced inertia from lossy effective fluids using multi-scale sonic crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced inertia from lossy effective fluids using multi-scale sonic crystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guild, Matthew es_ES
dc.contributor.author García Chocano, Víctor Manuel es_ES
dc.contributor.author Kan, Weiwei es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-07-10T06:26:16Z
dc.date.available 2015-07-10T06:26:16Z
dc.date.issued 2014-12
dc.identifier.issn 2158-3226
dc.identifier.uri http://hdl.handle.net/10251/52906
dc.description.abstract n this work, a recent theoretically predicted phenomenon of enhanced permittivity with electromagnetic waves using lossy materials is investigated for the analogous case of mass density and acoustic waves, which represents inertial enhancement. Starting from fundamental relationships for the homogenized quasi-static effective density of a fluid host with fluid inclusions, theoretical expressions are developed for the conditions on the real and imaginary parts of the constitutive fluids to have inertial enhancement, which are verified with numerical simulations. Realizable structures are designed to demonstrate this phenomenon using multi-scale sonic crystals, which are fabricated using a 3D printer and tested in an acoustic impedance tube, yielding good agreement with the theoretical predictions and demonstrating enhanced inertia. es_ES
dc.description.sponsorship This work was supported by the U.S. Office of Naval Research (Award N000141210216). en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof AIP Advances es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Inertia es_ES
dc.subject Sonic crystals es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Enhanced inertia from lossy effective fluids using multi-scale sonic crystals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4901880
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-12-1-0216/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Guild, M.; García Chocano, VM.; Kan, W.; Sánchez-Dehesa Moreno-Cid, J. (2014). Enhanced inertia from lossy effective fluids using multi-scale sonic crystals. AIP Advances. 4(12). https://doi.org/10.1063/1.4901880 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4901880 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 277497
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Dowling, J. P. (1992). Sonic band structure in fluids with periodic density variations. The Journal of the Acoustical Society of America, 91(5), 2539-2543. doi:10.1121/1.402990 es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Krokhin, A. A., Arriaga, J., & Gumen, L. N. (2003). Speed of Sound in Periodic Elastic Composites. Physical Review Letters, 91(26). doi:10.1103/physrevlett.91.264302 es_ES
dc.description.references Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004 es_ES
dc.description.references Zigoneanu, L., Popa, B.-I., Starr, A. F., & Cummer, S. A. (2011). Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. Journal of Applied Physics, 109(5), 054906. doi:10.1063/1.3552990 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015 es_ES
dc.description.references Sanchis, L., García-Chocano, V. M., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F., & Sánchez-Dehesa, J. (2013). Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 110(12). doi:10.1103/physrevlett.110.124301 es_ES
dc.description.references Guild, M. D., Alù, A., & Haberman, M. R. (2014). Cloaking of an acoustic sensor using scattering cancellation. Applied Physics Letters, 105(2), 023510. doi:10.1063/1.4890614 es_ES
dc.description.references García-Chocano, V. M., Cabrera, S., & Sánchez-Dehesa, J. (2012). Broadband sound absorption by lattices of microperforated cylindrical shells. Applied Physics Letters, 101(18), 184101. doi:10.1063/1.4764560 es_ES
dc.description.references Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674 es_ES
dc.description.references Frenzel, T., David Brehm, J., Bückmann, T., Schittny, R., Kadic, M., & Wegener, M. (2013). Three-dimensional labyrinthine acoustic metamaterials. Applied Physics Letters, 103(6), 061907. doi:10.1063/1.4817934 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2012). Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100(14), 144103. doi:10.1063/1.3701611 es_ES
dc.description.references Naify, C. J., Chang, C.-M., McKnight, G., & Nutt, S. (2010). Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. Journal of Applied Physics, 108(11), 114905. doi:10.1063/1.3514082 es_ES
dc.description.references Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007 es_ES
dc.description.references Hussein, M. I., & Frazier, M. J. (2013). Metadamping: An emergent phenomenon in dissipative metamaterials. Journal of Sound and Vibration, 332(20), 4767-4774. doi:10.1016/j.jsv.2013.04.041 es_ES
dc.description.references Reyes-Ayona, E., Torrent, D., & Sánchez-Dehesa, J. (2012). Homogenization theory for periodic distributions of elastic cylinders embedded in a viscous fluid. The Journal of the Acoustical Society of America, 132(4), 2896-2908. doi:10.1121/1.4744933 es_ES
dc.description.references Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381 es_ES
dc.description.references Carbonell, J., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2011). Electromagnetic absorption in anisotropic photonic crystal of alumina cylinders. Metamaterials, 5(2-3), 74-80. doi:10.1016/j.metmat.2011.03.001 es_ES
dc.description.references Godin, Y. A. (2013). Effective complex permittivity tensor of a periodic array of cylinders. Journal of Mathematical Physics, 54(5), 053505. doi:10.1063/1.4803490 es_ES
dc.description.references Torrent, D., Sánchez-Dehesa, J., & Cervera, F. (2007). Evidence of two-dimensional magic clusters in the scattering of sound. Physical Review B, 75(24). doi:10.1103/physrevb.75.241404 es_ES
dc.description.references Martin, P. A., Maurel, A., & Parnell, W. J. (2010). Estimating the dynamic effective mass density of random composites. The Journal of the Acoustical Society of America, 128(2), 571-577. doi:10.1121/1.3458849 es_ES
dc.description.references Erokhin, S. G., Lisyansky, A. A., Merzlikin, A. M., Vinogradov, A. P., & Granovsky, A. B. (2008). Photonic crystals built on contrast in attenuation. Physical Review B, 77(23). doi:10.1103/physrevb.77.233102 es_ES
dc.description.references Song, B. H., & Bolton, J. S. (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America, 107(3), 1131-1152. doi:10.1121/1.428404 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem