Mostrar el registro sencillo del ítem
dc.contributor.author | Spiousas, Ignacio | es_ES |
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2015-07-10T08:28:58Z | |
dc.date.available | 2015-07-10T08:28:58Z | |
dc.date.issued | 2011-06-13 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.issn | 1077-3118 | |
dc.identifier.uri | http://hdl.handle.net/10251/52986 | |
dc.description | Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics along with the following message: The following article appeared in Applied Physics Letters. 98(24) and may be found at http://dx.doi.org/10.1063/1.3599849. Authors own version of final article on e-print servers | es_ES |
dc.description.abstract | This letter demonstrates the mechanical tuning of modes confined in two-dimensional acoustic cavities based on anisotropic metafluids. The employed metafluids have been designed with effective parameters such that the radial component of the sound speed tensor keeps constant and the acoustic impedance remains finite along the tuning. It is shown that mode frequencies can be mechanically down shifted to extremely low values. Experiments confirm the model predictions and let us to conclude that this type of resonators can be employed for the miniaturization of standard resonators based on isotropic fluids such as air. © 2011 American Institute of Physics. | es_ES |
dc.description.sponsorship | We acknowledge support from Office of Naval Research (Grant No. N00014-09-1-0554) and from the Spanish Ministerio de Ciencia e Innovacion under projects with Grant Nos. TEC2010-19751 and CSD2008-00066 (CONSOLIDER Program). D.T. acknowledges a fellowship provided by the program Campus de Excelencia Internacional 2010 UPV. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acoustic cavities | es_ES |
dc.subject | Effective parameters | es_ES |
dc.subject | Isotropic fluids | es_ES |
dc.subject | Mechanical tuning | es_ES |
dc.subject | Mode frequencies | es_ES |
dc.subject | Model prediction | es_ES |
dc.subject | Radial component | es_ES |
dc.subject | Sound speed | es_ES |
dc.subject | Tunable resonators | es_ES |
dc.subject | Acoustic fields | es_ES |
dc.subject | Acoustic impedance | es_ES |
dc.subject | Air | es_ES |
dc.subject | Anisotropy | es_ES |
dc.subject | Resonators | es_ES |
dc.subject | Acoustic resonators | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Experimental realization of broadband tunable resonators based on anisotropic metafluids | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.3599849 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Spiousas, I.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters. 98(24). https://doi.org/10.1063/1.3599849 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.3599849 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 98 | es_ES |
dc.description.issue | 24 | es_ES |
dc.relation.senia | 192929 | |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 | es_ES |
dc.description.references | Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 | es_ES |
dc.description.references | Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 | es_ES |
dc.description.references | Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 | es_ES |
dc.description.references | Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004 | es_ES |
dc.description.references | Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032 | es_ES |
dc.description.references | Popa, B.-I., & Cummer, S. A. (2009). Design and characterization of broadband acoustic composite metamaterials. Physical Review B, 80(17). doi:10.1103/physrevb.80.174303 | es_ES |
dc.description.references | Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. The Journal of the Acoustical Society of America, 96(3), 1844-1853. doi:10.1121/1.410196 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301 | es_ES |
dc.description.references | Zigoneanu, L., Popa, B.-I., Starr, A. F., & Cummer, S. A. (2011). Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. Journal of Applied Physics, 109(5), 054906. doi:10.1063/1.3552990 | es_ES |
dc.description.references | Cai, L.-W., & Sánchez-Dehesa, J. (2007). Analysis of Cummer–Schurig acoustic cloaking. New Journal of Physics, 9(12), 450-450. doi:10.1088/1367-2630/9/12/450 | es_ES |