- -

Experimental realization of broadband tunable resonators based on anisotropic metafluids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental realization of broadband tunable resonators based on anisotropic metafluids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Spiousas, Ignacio es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-07-10T08:28:58Z
dc.date.available 2015-07-10T08:28:58Z
dc.date.issued 2011-06-13
dc.identifier.issn 0003-6951
dc.identifier.issn 1077-3118
dc.identifier.uri http://hdl.handle.net/10251/52986
dc.description Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics along with the following message: The following article appeared in Applied Physics Letters. 98(24) and may be found at http://dx.doi.org/10.1063/1.3599849. Authors own version of final article on e-print servers es_ES
dc.description.abstract This letter demonstrates the mechanical tuning of modes confined in two-dimensional acoustic cavities based on anisotropic metafluids. The employed metafluids have been designed with effective parameters such that the radial component of the sound speed tensor keeps constant and the acoustic impedance remains finite along the tuning. It is shown that mode frequencies can be mechanically down shifted to extremely low values. Experiments confirm the model predictions and let us to conclude that this type of resonators can be employed for the miniaturization of standard resonators based on isotropic fluids such as air. © 2011 American Institute of Physics. es_ES
dc.description.sponsorship We acknowledge support from Office of Naval Research (Grant No. N00014-09-1-0554) and from the Spanish Ministerio de Ciencia e Innovacion under projects with Grant Nos. TEC2010-19751 and CSD2008-00066 (CONSOLIDER Program). D.T. acknowledges a fellowship provided by the program Campus de Excelencia Internacional 2010 UPV. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustic cavities es_ES
dc.subject Effective parameters es_ES
dc.subject Isotropic fluids es_ES
dc.subject Mechanical tuning es_ES
dc.subject Mode frequencies es_ES
dc.subject Model prediction es_ES
dc.subject Radial component es_ES
dc.subject Sound speed es_ES
dc.subject Tunable resonators es_ES
dc.subject Acoustic fields es_ES
dc.subject Acoustic impedance es_ES
dc.subject Air es_ES
dc.subject Anisotropy es_ES
dc.subject Resonators es_ES
dc.subject Acoustic resonators es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Experimental realization of broadband tunable resonators based on anisotropic metafluids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.3599849
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Spiousas, I.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters. 98(24). https://doi.org/10.1063/1.3599849 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.3599849 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 98 es_ES
dc.description.issue 24 es_ES
dc.relation.senia 192929
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 es_ES
dc.description.references Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 es_ES
dc.description.references Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 es_ES
dc.description.references Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 es_ES
dc.description.references Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004 es_ES
dc.description.references Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032 es_ES
dc.description.references Popa, B.-I., & Cummer, S. A. (2009). Design and characterization of broadband acoustic composite metamaterials. Physical Review B, 80(17). doi:10.1103/physrevb.80.174303 es_ES
dc.description.references Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. The Journal of the Acoustical Society of America, 96(3), 1844-1853. doi:10.1121/1.410196 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301 es_ES
dc.description.references Zigoneanu, L., Popa, B.-I., Starr, A. F., & Cummer, S. A. (2011). Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. Journal of Applied Physics, 109(5), 054906. doi:10.1063/1.3552990 es_ES
dc.description.references Cai, L.-W., & Sánchez-Dehesa, J. (2007). Analysis of Cummer–Schurig acoustic cloaking. New Journal of Physics, 9(12), 450-450. doi:10.1088/1367-2630/9/12/450 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem