- -

Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy

Show simple item record

Files in this item

dc.contributor.author Domenech Carbo, Antonio es_ES
dc.contributor.author Lastras Pérez, Montserrat es_ES
dc.contributor.author Rodríguez Calás, Francisco es_ES
dc.contributor.author Cano, Emilio es_ES
dc.contributor.author Piquero Cilla, Juan es_ES
dc.contributor.author Osete Cortina, Laura es_ES
dc.date.accessioned 2015-07-17T08:10:01Z
dc.date.available 2015-07-17T08:10:01Z
dc.date.issued 2013
dc.identifier.issn 1432-8488
dc.identifier.uri http://hdl.handle.net/10251/53382
dc.description.abstract A methodology for monitoring washing procedures applied to stabilize archaeological iron is described. It is based on the combination of voltammetry of microparticles (VMP) with electrochemical impedance spectroscopy (EIS). A semiempirical approach is used where the impedances at low and high frequencies were related with the fraction areas of passive and corrosion layers generated during the stabilizing treatment, the thickness, and the porosity of the corrosion layer. The variation of such parameters with the time of washing was determined from EIS data for four types of desalination procedures using concentrated NaOH and/or Na2SO3 aqueous solutions on archaeological iron artifacts. After 2 months of treatment, EIS data indicate that an essentially identical stable state was attained in all cases, as confirmed by the formation of a passive magnetite layer identified in VMP measurements while the rate of variation of corroded surface and porosity at short washing times varied significantly from one stabilization procedure to another. es_ES
dc.description.sponsorship Financial support from the MEC Project CTQ2011-28079-CO3-02 which is supported with ERDF funds is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Solid State Electrochemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Archaelogical iron es_ES
dc.subject Desalinationmethods es_ES
dc.subject Electrochemical impedance spectroscopy es_ES
dc.subject Voltammetry of microparticles es_ES
dc.subject Conservation restoration es_ES
dc.subject.classification PINTURA es_ES
dc.title Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10008-013-2232-y
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-28079-C03-02/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALSISIS DE OBRAS PICTORICAS BASADOS EN "ONE-TOUCH", "LAYER-BY-LAYER" VOLTAMPEROMETRIA DE MICRO%2FNANOPARTICULAS Y MICROSCOPIA ELEC/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni es_ES
dc.description.bibliographicCitation Domenech Carbo, A.; Lastras Pérez, M.; Rodríguez Calás, F.; Cano, E.; Piquero Cilla, J.; Osete Cortina, L. (2013). Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry. 18(2):399-409. https://doi.org/10.1007/s10008-013-2232-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10008-013-2232-y es_ES
dc.description.upvformatpinicio 399 es_ES
dc.description.upvformatpfin 409 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 258602
dc.identifier.eissn 1433-0768
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Cronyn JM (1990) The elements of archaeological conservation. Routledge, London es_ES
dc.description.references Torgoose S (1982) Stud Conservat 27:97–101 es_ES
dc.description.references Keene S, Orton C (1985) Stud Conservat 30:136–142 es_ES
dc.description.references Selwyn L (2004) Overview of archaeological iron: the corrosion problem, key factors affecting treatment, and gaps in current knowledge. Proc. Metal 2004, National Museum of Australia, Canberra, pp 294–306 es_ES
dc.description.references Scott DA, Eggert G (2009) Iron and steel in art: corrosion, colorants, conservation. Archetype, London es_ES
dc.description.references North NA, Pearson C (1978) Stud Conservat 23:174–186 es_ES
dc.description.references Gilberg MR, Seeley NJ (1982) Stud Conservat 27:180–184 es_ES
dc.description.references Cornell RM, Giovanoli U (1990) Clays Clay Miner 38:469–476 es_ES
dc.description.references Scott DA, Seeley NJ (1987) Stud Conservat 32:73–76 es_ES
dc.description.references Watkinson D (1996) Chloride extraction from archaeological iron: comparative treatment efficiencies. In: Roy A, Smith P (eds) Archaeological conservation and its consequences. International Institute for Conservation, London, pp 208–212 es_ES
dc.description.references Watkinson D, Al Zahrani A (2008) The Conservator 31:75–86 es_ES
dc.description.references Schmutzler B, Eggert G (2010) Simplifying sodium sulphite solutions—the DBU Project Rettung vom dem Rost. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart es_ES
dc.description.references Watkinson D (1982) An assessment of the lithium hydroxide treatments for archaeological ironwork. In: Clarke RW, Blackshaw SM (eds) Conservation of iron, maritime monographs and reports of the National Maritime Museum 53, pp 208–213 es_ES
dc.description.references Wunderlich C-H, Kuhn C, Dröber V, Eggert G, Schleid T (2010) Efficiency of chloride extraction with organic ammonium bases: the Kur-Project “Conservation and Professional Sotrage of Iron Artefacts”. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart es_ES
dc.description.references Burshneva S, Smirnova N (2010) Some new advances in alkaline sulphite treatment of archaeological iron. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart es_ES
dc.description.references de Vivies P, Cook D, Drews MJ, Gonzalez NG, Mardikian P, Memet JB (2007) Transformation of akaganéite in archaeological iron artefacts using subcritical treatment. In: Degrigny C, Van Langh R, Joosten I, Ankersmit B (eds) Proceedings of the International Conference on Metals Conservation, Amsterdam, Netherlands, pp 17–21 es_ES
dc.description.references Mardikian P, Gonzalez N, Drews MJ, Nasanen L (2010) The use of subcritical solutions for the stabilization of archaeological iron artifacts. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart es_ES
dc.description.references Dalard F, Gourbeyre Y, Degrigny C (2002) Stud Conserv 47:117–121 es_ES
dc.description.references Adriaens A, Dowsett M, Leyssens K, Van Gasse B (2007) Anal Bioanal Chem 387:861–868 es_ES
dc.description.references Guilminot E, Baron G, Memet JB, Huet N, Le Noc E (2007) Electrolytic treatment of archaeological marine chloride impregnated iron objects by remote control. In: Degrigny C, Van Lang R, Joosten I, Ankersmith B (eds) Metal 07. Proceedings of the Interim meeting of the ICOM-CC Metal WG, vol 3, Amsterdam (the Netherlands). Rijksmuseum Amsterdam, Amsterdam, pp 38–43 es_ES
dc.description.references Liu J, Li Y, Wu M (2008) Stud Conserv 53:41–48 es_ES
dc.description.references Selwyn LS, McKinnon WR, Argyropoulos V (2001) Stud Conservat 46:109–120 es_ES
dc.description.references Schmutzler B, Eggert G (2010) The chloride left behind (dis)solving an analytical problem. In: Eggert G, Schmutzler B (eds) Achaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgart es_ES
dc.description.references Doménech-Carbó A, Lastras M, Rodríguez F, Osete-Cortina L (2013) Microchem J 106:41–50 es_ES
dc.description.references Scholz F, Meyer B (1992) Chem Soc Rev 23:341–347 es_ES
dc.description.references Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry, A Series of Advances, vol 20. Marcel Dekker, New York, pp 1–86 es_ES
dc.description.references Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical Methods in Archaeometry, Conservation and Restoration. In: Scholz F (ed) Monographs in electrochemistry series. Springer, Berlin es_ES
dc.description.references Doménech-Carbó A (2010) J Solid State Electrochem 14:363–379 es_ES
dc.description.references Doménech-Carbó A (2012) Electrochemical techniques. In: Edwards HGM, Vandenabeele P (eds) Analytical Archaeometry, selected topics, chapter 7. The Royal Society of Chemistry, London es_ES
dc.description.references Doménech-Carbó A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609–631 es_ES
dc.description.references Doménech-Carbó A (2011) Anal Methods 3:2181–2188 es_ES
dc.description.references Doménech-Carbó A (2012) Electrochemical analysis: voltammetry of microparticles. In: Dillmann P, Adriaens A, Angelini E, Watkinson D (eds) Corrosion and conservation of cultural heritage metallic artefacts (Chapter II.7). European Federation of Corrosion, Maney, Leeds es_ES
dc.description.references Walter GW (1981) J Electroanal Chem 118:259–273 es_ES
dc.description.references Murray JN (1997) Progr Org Coat 31:375–391 es_ES
dc.description.references Bastidas JM, Polo JL, Cano E, Torres CL, Mora N (2000) Mater Corros 51:712–718 es_ES
dc.description.references Bastidas JM, Polo JL, Torres CL, Cano E (2001) Corros Sci 43:269–281 es_ES
dc.description.references Alves VA, Brett CMA (2002) Electrochim Acta 47:2081–2091 es_ES
dc.description.references Polo JL, Cano E, Bastidas JM (2002) J Electroanal Chem 537:183–187 es_ES
dc.description.references Park JJ, Pyun SI (2003) J Solid State Electrochem 7:380–388 es_ES
dc.description.references Evesque M, Keddam M, Takenouti H (2004) Electrochim Acta 49:2937–2943 es_ES
dc.description.references Li WS, Cai SQ, Luo JL (2004) J Electrochem Soc 151:B220–B226 es_ES
dc.description.references Mora N, Cano E, Polo JL, Puente JM, Bastidas JM (2004) Corros Sci 46:563–568 es_ES
dc.description.references Chiavari C, Colledan A, Frignani A, Brunoro G (2006) Mater Chem Phys 95:252–259 es_ES
dc.description.references Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P (2007) Electrochim Acta 52:7760–7769 es_ES
dc.description.references Liu W, Zhang H, Qu Z, Zhang Y, Li J (2010) J Solid State Electrochem 14:965–973 es_ES
dc.description.references Toledo-Martos LA, Pech-Canul MA (2011) J Solid State Electrochem 15:1927–1934 es_ES
dc.description.references Cano E, Lafuente D, Bastidas DM (2010) J Solid State Electrochem 14:381–391 es_ES
dc.description.references Grassini S, Angelini E, Parvis M, Bouchar M, Dillmann P, Neff D (2013) Appl Phys A. doi: 10.1007/s00339-013-7724-1 es_ES
dc.description.references Hernandez-Escampa M, Gonzalez J, Uruchurtu-Chavarin J (2010) J Appl Electrochem 40:345–356 es_ES
dc.description.references Young L (1961) Anodic oxide films. Academic, New York es_ES
dc.description.references Rosas-Camacho O, Urquidi-Macdonald M, Macdonald DD (2009) ECS Trans 19:143–165 es_ES
dc.description.references Macdonald DD, Engelhardt GL (2010) ECS Trans 28:123–144 es_ES
dc.description.references Sharifi-Asl F, Taylor ML, Lu Z, Engelhardt GL, Kursten B, Macdonald DD (2013) Electrochim Acta 102:161–173 es_ES
dc.description.references Macdonald DD (2011) Electrochim Acta 56:1761–1772 es_ES
dc.description.references Macdonald DD, Sikora A, Engelhardt G (1998) Electrochim Acta 43:87–107 es_ES
dc.description.references Grygar T (1996) J Electroanal Chem 405:117–125 es_ES
dc.description.references Grygar T (1997) J Solid State Electrochem 1:77–82 es_ES
dc.description.references Xu J, Huang W, McCreery RL (1996) J Electroanal Chem 410:235–242 es_ES
dc.description.references Kuang F, Zhang D, Li Y, Wan Y, Hou B (2009) J Solid State Electrochem 13:385–390 es_ES
dc.description.references Chen G, Waraksa CC, Cho H, Macdonald DD, Mallouk TE (2003) J Electrochm Soc 150:E423–E428 es_ES
dc.description.references Rimmer M, Watkinson D, Wang Q (2012) Stud Conservat 57:29–41 es_ES
dc.description.references Poljacek SM, Risovic D, Cigula T, Gojo M (2012) J Solid State Electrochem 16:1077–1089 es_ES
dc.description.references Sluythers-Rehnach M (1994) Pure Appl Chem 66:1831–1891 es_ES
dc.description.references Boukamp BA, Bouwmeester HJM (2003) Solid State Ionics 157:29–33 es_ES
dc.description.references Ibrahim MAM, Pongkao D, Yoshimura M (2002) J Solid State Electrochem 2002(6):341–350 es_ES
dc.description.references Xia Z, Nanjo H, Aizawa T, Kanakubo M, Fujimura M, Onagawa J (2007) Surf Sci 601:5133–5141 es_ES
dc.description.references Lee S-J, Pyun S-I (2007) J Solid State Electrochem 11:829–839 es_ES
dc.description.references Raistrick ID (1990) Electrochim Acta 35:1579–1586 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Peiró MA (2011) Electroanalysis 23:1391–1400 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2012) Electroanalysis 24:1945–1955 es_ES
dc.description.references Mutombo P, Hackerman N (1997) J Solid State Electrochem 1:194–198 es_ES
dc.description.references Fetisov VB, Ermakov AN, Belysheva GM, Fetisov AV, Kamyshov VM, Brainina KZ (2004) J Solid State Electrochem 8:565–571 es_ES
dc.description.references Venkatram MS, Cole IS, Emmanuel B (2011) Electrochim Acta 56:8192–8203 es_ES
dc.description.references Turgoose S (1993) Structure, composition and deterioration of unearthed iron objects. In: Current problems in the conservation of metal antiquities. Tokyo National Research Institute of Cultural Properties, Tokyo, pp 35–52 es_ES


This item appears in the following Collection(s)

Show simple item record