Mostrar el registro sencillo del ítem
dc.contributor.author | Zehhaf, A. | es_ES |
dc.contributor.author | Benyoucef, A. | es_ES |
dc.contributor.author | Quijada Tomás, Cesar | es_ES |
dc.contributor.author | Taleb, S. | es_ES |
dc.contributor.author | Morallón, E. | es_ES |
dc.date.accessioned | 2015-07-24T10:10:10Z | |
dc.date.available | 2015-07-24T10:10:10Z | |
dc.date.issued | 2015-02 | |
dc.identifier.issn | 1735-1472 | |
dc.identifier.uri | http://hdl.handle.net/10251/53705 | |
dc.description.abstract | The adsorption of As(III) from aqueous solutions using naturally occurring and modified Algerian montmorillonites has been investigated as a function of contact time, pH, and temperature. Kinetic studies reveal that uptake of As(III) ions is rapid within the first 3 h, and it slows down thereafter. Equilibrium studies show that As(III) shows the highest affinity toward acidic montmorillonite even at very low concentration of arsenic. The kinetics of As(III) adsorption on all montmorillonites used is well described by a pseudo-second-order chemical reaction model, which indicates that the adsorption process of these species is likely to be chemisorption. Adsorption isotherms of As(III) fitted the Langmuir and Freundlich isotherm models well. The adsorption of As(III) is pH-dependent obtaining an optimal adsorption at pH 5. From the thermodynamic parameters, it is concluded that the process is exothermic, spontaneous, and favorable. The results suggest that M-1, M-2, and acidic-M-2 could be used as low-cost and effective filtering materials for removal of arsenic from water. | es_ES |
dc.description.sponsorship | This work has been financed by the Ministerio de Economia y Competitividad and FEDER(project MAT2010-15273). The National Agency for the Development of University Research (CRSTRA), the Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | International Journal of Environmental Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Adsorption | es_ES |
dc.subject | Clay | es_ES |
dc.subject | Ion exchange | es_ES |
dc.subject | Arsenic | es_ES |
dc.subject | Montmorillonite | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Algerian natural montmorillonites for arsenic(III) removal in aqueous solution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13762-013-0437-3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-15273/ES/ELECTRODOS NANOESTRUCTURADOS PARA APLICACIONES EN SENSORES ELECTROQUIMICOS Y SUPERCONDENSADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Zehhaf, A.; Benyoucef, A.; Quijada Tomás, C.; Taleb, S.; Morallón, E. (2015). Algerian natural montmorillonites for arsenic(III) removal in aqueous solution. International Journal of Environmental Science and Technology. 12(2):595-602. https://doi.org/10.1007/s13762-013-0437-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s13762-013-0437-3 | es_ES |
dc.description.upvformatpinicio | 595 | es_ES |
dc.description.upvformatpfin | 602 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 281567 | |
dc.identifier.eissn | 1735-2630 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Direction Générale de la Recherche Scientifique et du Développement Technologique, Argelia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Akter A, Ali MH (2011) Arsenic contamination in groundwater and its proposed remedial measures. Int J Environ Sci Tech 8:433–443 | es_ES |
dc.description.references | Ali I, Asim M, Khan TA (2013) Arsenite removal from water by electroacoagulation on zinc–zinc and copper–copper electrodes. Int J Environ Sci Technol 10:377–384 | es_ES |
dc.description.references | Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interf Sci 140:114–131 | es_ES |
dc.description.references | Chakravarty S, Dureja V, Bhattacharyya G, Maity S, Bhattacharjee S (2002) Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res 36:625–632 | es_ES |
dc.description.references | Daniel R, Rao AVSP (2012) An efficient removal of arsenic from industrial effluents using electro-coagulation as clean technology option. Int J Environ Res 6:711–718 | es_ES |
dc.description.references | Elizalde-González MP, Mattusch J, Einicke WD, Wennrich R (2001) Sorption on natural solids for arsenic removal. Chem Eng J 81:187–195 | es_ES |
dc.description.references | Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16 | es_ES |
dc.description.references | Kartinen EO, Martin CJ (1995) An overview of arsenic removal processes. Desalination 103:79–88 | es_ES |
dc.description.references | Kul AR, Koyunchu H (2010) Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J Hazard Mater 179:332–339 | es_ES |
dc.description.references | Kundu S, Gupta AK (2007) Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC). J Harzard Mater 142:97–104 | es_ES |
dc.description.references | Kushwaha S, Soni H, Ageetha V, Padmaja P (2013) An insight into production, characterization, mechanism of action of low-cost adsorbents for removal of organics from aqueous solution. Crit Rev Environ Sci Tech 43:443–549 | es_ES |
dc.description.references | Lin MC, Cheng HH, Lin HY, Chen YC, Chen YP, Liao CM, Chang CGP, Dai CF, Han BC, Liu CW (2004) Arsenic accumulation and acute toxicity in milkfish (Chanos chanos) from blackfoot disease area in Taiwan. Bull Environ Contam Toxicol 72:248–254 | es_ES |
dc.description.references | Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D, Linares-Solano A (2009) Porous texture of carbons. In: Beguin F, Frackowiak E (eds) Carbons for electrochemical energy storage and conversion systems. CRC, Boca Raton, pp. 115–162 | es_ES |
dc.description.references | Maity S, Chakravarty S, Bhattacharjee S, Roy BC (2005) A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Water Res 39:2579–2590 | es_ES |
dc.description.references | Malakootian M, Nouri J, Hossaini H (2009) Removal of heavy metals from paint industry’’ wastewater using Leca as an available adsorbent. Int J Environ Sci Tech 6:183–190 | es_ES |
dc.description.references | Morallón E, Arias-Pardilla J, Calo JM, Cazorla-Amorós D (2009) Arsenic specie interactions with a porous carbon electrode as determined with an electrochemical quart crystal microbalance. Electrochim Acta 54:3996–4004 | es_ES |
dc.description.references | Na P, Jia X, Yuan B, Li Y, Na J, Chen Y, Wang L (2010) Arsenic adsorption on Ti-pillared Montmorillonite. J Chem Technol Biotechnol 85:708–714 | es_ES |
dc.description.references | Onnby L, Pakade V, Mattiasson B, Kirsebom H (2012) Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res 46:4111–4120 | es_ES |
dc.description.references | Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337 | es_ES |
dc.description.references | Salavagione HJ, Cazorla-Amorós D, Tidjane S, Belbachir M, Benyoucef A, Morallón E (2008) Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. Eur Polym J 44:1275–1284 | es_ES |
dc.description.references | Sari A, Tuzen M, Soylak M (2007) Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J Hazard Mater 144:41–46 | es_ES |
dc.description.references | Shah BA, Shah AV, Singh RR (2009) Kinetics of chromium uptake from wastewater using natural sorbent material. Int J Environ Sci Technol 6:77–90 | es_ES |
dc.description.references | Tang Q, Tang X, Li Z, Chen Y, Kou N, Su Z (2009) Adsorption and desorption behaviour of Pb(II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies. J Chem Technol Biotechnol 84:1371–1380 | es_ES |
dc.description.references | Urik M, Littera P, Sevc J, Kolencik M, Cernansky S (2009) Removal of arsenic(V) from aqueous solutions using chemically modified sawdust of sprude (Picea abies): kinetics and isotherm studies. Int J Environ Sci Technol 6:451–456 | es_ES |
dc.description.references | Zandsalimi S, Karimi N, Kohandel A (2011) Arsenic in soil, vegetation and water of a contaminated region. Int J Environ Sci Tech 8:331–338 | es_ES |
dc.description.references | Zehhaf A, Benyoucef A, Berenguer R, Quijada C, Taleb S, Morallon E (2012) Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. J Therm Anal Calorim 110:1069–1077 | es_ES |