- -

Two-step numerical procedure for complex permittivity retrieval of dielectric materials from reflection measurements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two-step numerical procedure for complex permittivity retrieval of dielectric materials from reflection measurements

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hasar, Ugur Cem es_ES
dc.contributor.author Barroso, Joaquim José es_ES
dc.contributor.author Kaya, Yunus es_ES
dc.contributor.author Ertugrul, Mehmet es_ES
dc.contributor.author Bute, Musa es_ES
dc.contributor.author Catalá Civera, José Manuel es_ES
dc.date.accessioned 2015-07-28T09:01:39Z
dc.date.available 2015-07-28T09:01:39Z
dc.date.issued 2014-09
dc.identifier.issn 0947-8396
dc.identifier.uri http://hdl.handle.net/10251/53818
dc.description.abstract A two-step measurement procedure has been proposed for measurement of complex permittivity of dielectric materials using one-port reflection measurements. In the procedure, as a first step, a graphical method is applied to analyze on the complex reflection-coefficient plane the general pattern of dielectric behavior of the sample. Then, as a second step, optimization algorithms are utilized for retrieving electrical properties of samples. The procedure requires measurement of complex reflectionscattering parameters of at least two samples with different lengths. It has been validated by X-band measurements of three polyvinyl chloride samples with lengths 5, 10, and 20mm. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Applied Physics A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Resolving phase ambiguity es_ES
dc.subject Bianisotropic metamaterials es_ES
dc.subject Electrical-conductivity es_ES
dc.subject Contactless measurement es_ES
dc.subject Optical constants es_ES
dc.subject Transmission-line es_ES
dc.subject Unique retrieval es_ES
dc.subject Liquid materials es_ES
dc.subject Inverse problem es_ES
dc.subject Parameters es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Two-step numerical procedure for complex permittivity retrieval of dielectric materials from reflection measurements es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00339-014-8303-9
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Hasar, UC.; Barroso, JJ.; Kaya, Y.; Ertugrul, M.; Bute, M.; Catalá Civera, JM. (2014). Two-step numerical procedure for complex permittivity retrieval of dielectric materials from reflection measurements. Applied Physics A. 116(4):1701-1710. doi:10.1007/s00339-014-8303-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00339-014-8303-9 es_ES
dc.description.upvformatpinicio 1701 es_ES
dc.description.upvformatpfin 1710 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 288097
dc.identifier.eissn 1432-0630
dc.description.references U. Kaatze, Metrologia 47, S91 (2010) es_ES
dc.description.references J.M. Catalá-Civera, F. Peñaranda-Foix, D. Sánchez-Hernández, E. de los Reyes, Microwave. Opt. Technol. Lett. 25, 191 (2000) es_ES
dc.description.references A.E. Engin, IEEE Trans. Microwave. Theory Tech. 58, 211 (2010) es_ES
dc.description.references M.D. Janezic, J.A. Jargon, IEEE Microwave Guid. Wave Lett. 9, 76 (1999) es_ES
dc.description.references I. Cuinas, M.G. Sanchez, IEEE Trans. Antennas Propag. 48, 1269 (2000) es_ES
dc.description.references U.C. Hasar, NDT E Int. 42, 550 (2009) es_ES
dc.description.references D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. 65, 195104 (2002) es_ES
dc.description.references D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis Phys. Rev. 71, 036617 (2005) es_ES
dc.description.references X. Chen, T.M. Grzegorczyk, B.-I. Wu, J. Pacheco Jr, J.A. Kong, Phys. Rev. E 70, 016608 (2004) es_ES
dc.description.references Z. Li, K. Aydin, E. Ozbay, Phys. Rev. E 79, 026610 (2009) es_ES
dc.description.references U.C. Hasar, J.J. Barroso, Prog. Electromagn. Res. 112, 109 (2011) es_ES
dc.description.references S. Roberts, A. von Hippel, J. Appl. Phys. 17, 610 (1946) es_ES
dc.description.references S.O. Nelson, C.W. Schlaphoff, L.E. Stetson, J. Microwave Power. 8, 13 (1973) es_ES
dc.description.references Y. Huang, Meas. Sci. Technol. 12, 111 (2001) es_ES
dc.description.references U.C. Hasar, J.J. Barroso, C. Sabah, Y. Kaya, Prog. Electromagn. Res. 129, 405 (2012) es_ES
dc.description.references G. Guo, E. Li, Z. Li, Q. Zhang, F. He, Meas. Sci. Technol. 22, 045707 (2011) es_ES
dc.description.references S.N. Kharkovsky, M.T. Ghasr, R. Zoughi, IEEE Trans. Instrum. Meas. 58, 2367 (2009) es_ES
dc.description.references U.C. Hasar, M.T. Yurtcan, Measurement 43, 255 (2010) es_ES
dc.description.references U.C. Hasar, O. Simsek, A.C. Aydin, Microwave Opt. Technol. Lett. 52, 801 (2010) es_ES
dc.description.references U.C. Hasar, Prog. Electromagn. Res. 95, 365 (2009) es_ES
dc.description.references U.C. Hasar, J. Mater. Civ. Eng. 21, 484 (2009) es_ES
dc.description.references S. Humphrey, Appl. Opt. 46, 4660 (2007) es_ES
dc.description.references J. Luňáček, P. Hlubina, M. Luňáčková, Appl. Opt. 48, 985 (2009) es_ES
dc.description.references Rusli, G.A.J. Amaratunga, Appl. Opt. 34, 7914 (1995) es_ES
dc.description.references P. Herhandez-Gomez, J.M. Munoz, M.A. Valente, IEEE Trans. Magn. 46, 475 (2010) es_ES
dc.description.references D. Gonzalez-Herrero, J.M. Munoz, C. Torres, P. Herhandez-Gomez, O. Alejos, C. de Francisco, Appl. Phys. A 112, 719 (2013) es_ES
dc.description.references S. Trabelsi, A.W. Kraszewski, S.O. Nelson, IEEE Trans. Instrum. Meas. 49, 56 (2000) es_ES
dc.description.references U.C. Hasar, Meas. Sci. Technol. 19, 055706 (2008) es_ES
dc.description.references V.V. Varadan, R. Ro, IEEE Trans. Microwave Theory Tech. 55, 2224 (2007) es_ES
dc.description.references Z. Szabo, G.-H. Park, R. Hedge, E.P. Li, IEEE Trans. Microwave Theory Tech. 58, 2646 (2010) es_ES
dc.description.references W.B. Weir, Proc. IEEE 62, 33 (1974) es_ES
dc.description.references J.J. Barroso, U.C. Hasar, J. Infrared Milli. Terahz Waves 32, 857 (2011) es_ES
dc.description.references O. Luukonen, S.I. Maslovski, S.A. Tretyakov, IEEE Antennas Wirel. Propag. Lett. 10, 1295 (2011) es_ES
dc.description.references U.C. Hasar, J.J. Barroso, C. Sabah, Y. Kaya, M. Ertugrul, J. Opt. Soc. Am. B 30, 1058 (2013) es_ES
dc.description.references U.C. Hasar, IET Microw. Antennas Propag. 4, 630 (2009) es_ES
dc.description.references C.A. Balanis, Advanced engineering electromagnetics. (Wiley, West Sussex, 2012) es_ES
dc.description.references P.I. Somlo, J.D. Hunter, IEEE Trans. Instrum. Meas. 30, 230 (1981) es_ES
dc.description.references M. Zhihong, S. Okamura, IEEE Trans. Microwave Theory Tech. 47, 546 (1999) es_ES
dc.description.references C. Wan, B. Nauwelaers, W. De Raedt, M. Van Rossum, IEEE Trans. Microwave Theory Tech. 46, 1614 (1998) es_ES
dc.description.references U.C. Hasar, IEEE Geosci. Remote Sens. Lett. 8, 562 (2011) es_ES
dc.description.references J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, IEEE Trans. Microwave Theory Tech. 38, 1096 (1990) es_ES
dc.description.references U.C. Hasar, IEEE Trans. Microwave Theory Tech. 58, 411 (2010) es_ES
dc.description.references U.C. Hasar, C.R. Westgate, M. Ertgurul, IEEE Microwave Wirel. Compon. Lett. 19, 419 (2009) es_ES
dc.description.references S. Kim, E.F. Kuester, C.L. Holloway, A.D. Scher, J. Baker-Jarvis, IEEE Trans. Antennas Propag. 59, 2226 (2011) es_ES
dc.description.references W. Sun, B. Yang, X. Wang, Y. Zhang, R. Donnan. Opt. Lett. 38, 5438 (2013) es_ES
dc.description.references B. Yang, X. Wang, Y. Zhang, R.S. Donnan, J. Appl. Phys. 109, 033509 (2011) es_ES
dc.description.references Y. Ju, Y. Hirosawa, H. Soyama, M. Saka, Appl. Phys. Lett. 87, 162102 (2005) es_ES
dc.description.references Y. Ju, K. Inoue, M. Saka. Appl. Phys. Lett. 81, 3585 (2002) es_ES
dc.description.references A.M. Nicolson, G. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970) es_ES
dc.description.references K. Chalapat, K. Sarvala, J. Li, G.S. Paraoanu, IEEE Trans. Microwave Theory Tech. 57, 2257 (2009) es_ES
dc.description.references U.C. Hasar, Y. Kaya, M. Bute, J.J. Barroso, M. Ertugrul, Rev. Sci. Instrum. 85, 014705 (2014) es_ES
dc.description.references U.C. Hasar, J.J. Barroso, M. Bute, Y. Kaya, M. Ertugrul, Sens. Actuators A Phys. 206, 107 (2014) es_ES
dc.description.references U.C. Hasar, J.J. Barroso, Y. Kaya, M. Ertugrul, M. Bute, Sens. Actuators A Phys. 203, 346 (2013) es_ES
dc.description.references K.J. Bois, L.F. Handjojo, A.D. Benally, K. Mubarak, R. Zoughi, IEEE Trans. Instrum. Meas. 48, 1141 (1999) es_ES
dc.description.references A.-H. Boughriet, C. Legrand, C. Chapoton, IEEE Trans. Microwave Theory Tech. 45, 52 (1997) es_ES
dc.description.references J. Sheen, Meas. Sci. Technol. 20, 042001 (2008) es_ES
dc.description.references A. Lonappan, V. Thomas, J. Jacob, C. Rajasekaran, K.T. Mathew, Microwave Opt. Technol. Lett. 51, 915 (2009) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem