- -

The Taylor expansion of the exponential map and geometric applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The Taylor expansion of the exponential map and geometric applications

Show full item record

Monera, M.; Montesinos Amilibia, Á.; Sanabria Codesal, E. (2014). The Taylor expansion of the exponential map and geometric applications. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas (RACSAM). 108(2):881-906. https://doi.org/10.1007/s13398-013-0149-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/53919

Files in this item

Item Metadata

Title: The Taylor expansion of the exponential map and geometric applications
Author: Monera, M.G. Montesinos Amilibia, Ángel Sanabria Codesal, Esther
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
In this work we consider the Taylor expansion of the exponential map of a submanifold immersed in Rn up to order three, in order to introduce the concepts of lateral and frontal deviation. We compute the directions of ...[+]
Subjects: Exponential map , Surfaces , Extremal directions , Contact , Normal torsion
Copyrigths: Reserva de todos los derechos
Source:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas (RACSAM). (issn: 1578-7303 ) (eissn: 1579-1505 )
DOI: 10.1007/s13398-013-0149-z
Publisher:
Springer Milan
Publisher version: http://link.springer.com/article/10.1007%2Fs13398-013-0149-z
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2009-08933/ES/Singularidades, Geometria Generica Y Morfologia Matematica/
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s13398-013-0149-z
Thanks:
This work was partially supported by DGCYT grant no. MTM2009-08933.
Type: Artículo

References

Arnol’d, V.I., Gusein-zade, V.I., Varchenko, A.N.: Singularities of Differentiable Maps. Monographs in Mathematics, vol. 82. Birkhäuser, Boston (1985)

Chen, B.-Y., Li, S.-J.: The contact number of a Euclidean submanifold. Proc. Edinburgh Math. Soc. 47, 69–100 (2004)

Fessler, W.: $$\ddot{U}$$ U ¨ ber die normaltorsion von Fl $$\ddot{a}$$ a ¨ chen im vierdimensionalen euklidischen. Raum. Comm. Math. Helv. 33(2), 89–108 (1959) [+]
Arnol’d, V.I., Gusein-zade, V.I., Varchenko, A.N.: Singularities of Differentiable Maps. Monographs in Mathematics, vol. 82. Birkhäuser, Boston (1985)

Chen, B.-Y., Li, S.-J.: The contact number of a Euclidean submanifold. Proc. Edinburgh Math. Soc. 47, 69–100 (2004)

Fessler, W.: $$\ddot{U}$$ U ¨ ber die normaltorsion von Fl $$\ddot{a}$$ a ¨ chen im vierdimensionalen euklidischen. Raum. Comm. Math. Helv. 33(2), 89–108 (1959)

García, R., Sotomayor, J.: Geometric mean curvature lines on surfaces immersed in $$\mathbb{R}^3$$ R 3 . Annales de la faculté des sciences de Toulouse, $$6^e$$ 6 e ser, vol. 11, No. 3, pp. 377–401 (2002)

García, R., Sotomayor, J.: Lines of axial curvature on surfaces immersed in $$R^4$$ R 4 . Differ. Geom. Appl. 12, 253–269 (2000)

Golubitsky, M., Gillemin, V.: Stable Mappings and their Singularities. Springer, Berlin (1973)

Hartmann, F., Hanzen, R.: Apollonius’s Ellipse and Evolute Revisited–The Discriminant of the Related Quartic. http://www3.villanova.edu/maple/misc/ellipse/Apollonius2004.pdf

Llibre, J., Yanquian, Y.: On the dynamics of surface vector fields and homeomofphisms (preprint)

Looijenga, E.J.N.: Structural stability of smooth families of $$C^{\infty }$$ C ∞ -functions. University of Amsterdam, Doctoral Thesis (1974)

Mochida, D.K.H., Romero-Fuster, M.C., Ruas, M.A.S.: Inflection points and nonsingular embeddings of surfaces in $$\mathbb{R}^5$$ R 5 . Rocky Mt. J. Math. 33, 3 (2003)

Mochida, D.K.H., Romero-Fuster, M.C., Ruas, M.A.S.: Osculating hyperplanes and asymptotic directions of codimension two submanifolds of Euclidean spaces. Geom. Dedicata 77(3), 305–315 (1999)

Mochida, D.K.H., Romero Fuster, M.C., Ruas, M.A.S.: The geometry of surfaces in 4-space from a contact viewpoint. Geom. Dedicata 54, 323–332 (1995)

Monera, G.M., Montesinos-Amilibia, A., Moraes, S.M., Sanabria-Codesal, E.: Critical points of higher order for the normal map of immersions in $$\mathbb{R}^d$$ R d . Topol. Appl. 159, 537–544 (2012)

Montaldi, J.A.: Contact with application to submanifolds, PhD Thesis, University of Liverpool (1983)

Montaldi, J.A.: On contact between submanifolds. Michigan Math. J. 33, 195–199 (1986)

Montesinos-Amilibia, A.: Parametricas4, computer program freely available from http://www.uv.es/montesin

Montesinos-Amilibia, A.: Parametricas5, computer program freely available from http://www.uv.es/montesin

Moraes, S., Romero-Fuster, M.C., Sánchez-Bringas, F.: Principal configurations and umbilicity of submanifolds in $$I\!\! R^n$$ I R n . Bull. Bel. Math. Soc. 10, 227–245 (2003)

Porteous, I.R.: The normal singularities of a submanifold. J. Differ. Geom. 5, 543–564 (1971)

Romero-Fuster, M.C., Ruas, M.A.S., Tari, F.: Asymptotic curves on surfaces in $$R^5$$ R 5 . Commun. Contemp. Math. 10, 309–335 (2008)

Romero-Fuster, M.C., Sánchez-Bringas, F.: Umbilicity of surfaces with orthogonal asymptotiv lines in $$R^4$$ R 4 . Differ. Geom. Appl. 16, 213–224 (2002)

Tari, F.: On pairs of geometric foliations on a cross-cap. Tohoku Math. J. 59(2), 233–258 (2007)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record