- -

Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area

Show simple item record

Files in this item

dc.contributor.author García Aleix, J.R. es_ES
dc.contributor.author Delgado Saborit, J.M. es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.contributor.author Amigó Descarrega, Jose Mª es_ES
dc.contributor.author Esteve Cano, Vicente es_ES
dc.date.accessioned 2015-09-08T14:22:50Z
dc.date.available 2015-09-08T14:22:50Z
dc.date.issued 2014-01
dc.identifier.issn 0944-1344
dc.identifier.uri http://hdl.handle.net/10251/54406
dc.description.abstract Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005-2010. Concentrations of PM10 and its arsenic content range from 27 to 46 mu g/m(3) and from 0.7 to 6 ng/m(3) in the industrial area, respectively, and from 25 to 40 mu g/m(3) and from 0.7 to 2.8 ng/m(3) in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 mu g/m(3) and from 0.5 to 1.4 ng/m(3) in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65-0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations. es_ES
dc.description.sponsorship The authors are grateful to Ilmo. Ayuntamiento de L'Alcora for the financial support through the 07I055 project, Generalitat Valenciana for their support and collaboration, and Miss Miriam Rubio Renau for her assistance in the laboratory work. Also, the authors are indebted to an anonymous referee for the interesting suggestions. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Ilmo. Ayuntamiento de L'Alcora 07I055 es_ES
dc.relation Generalitat Valenciana es_ES
dc.relation.ispartof Environmental Science and Pollution Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Arsenic es_ES
dc.subject Atmospheric particles es_ES
dc.subject PM2.5 es_ES
dc.subject PM10 es_ES
dc.subject Ceramic industry es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11356-013-1950-0
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation García Aleix, J.; Delgado Saborit, J.; Verdú Martín, GJ.; Amigó Descarrega, JM.; Esteve Cano, V. (2014). Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area. Environmental Science and Pollution Research. 21(1):695-703. doi:10.1007/s11356-013-1950-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11356-013-1950-0 es_ES
dc.description.upvformatpinicio 695 es_ES
dc.description.upvformatpfin 703 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 283547 es_ES
dc.identifier.eissn 1614-7499
dc.relation.references Arruti A, Fernandez-Olmo I, Irabien A (2011) Impact of the global economic crisis on metal levels in particulate matter (PM) at an urban area in the Cantabria region (northern Spain). Environ Pollut 159:1129–1135 es_ES
dc.relation.references Arslan F, Arslan C, Celik MS (1999) Arsenic removal through the decrepitation of colemanite ores. Powder Technol 103:260–264 es_ES
dc.relation.references Benach J, Yasui Y, Borrell C, Rosa E, Pasarin MI, Benach N et al (2003) Examining geographic patterns of mortality: the atlas of mortality in small areas in Spain (1987–1995). Eur J Public Health 13:115–123 es_ES
dc.relation.references Cantor KP, Lubin JH (2007) Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmacol 222:252–257 es_ES
dc.relation.references Celades I, Moliner-Salvador R, Ros-Dosda T, Monfort E, Zaera V (2012) Environmental development of the spanish ceramic tile manufacturing sector over the period 1992–2007. Boletin de la Sociedad Espanola de Ceramica y Vidrio 51:111–118 es_ES
dc.relation.references Chappell WR, Abernathy CO, Calderon RL, Thomas DJ (eds) (2003) Arsenic exposure and health effects V. Proceedings of the Fifth International Conference on Arsenic Exposure and Health Effects, 14–18 July 2002, San Diego, California es_ES
dc.relation.references Chen WH, Bochmann F, Sun Y (2007) Effects of work related confounders on the association between silica exposure and lung cancer: a nested case–control study among Chinese miners and pottery workers. Int Arch Occup Environ health 80:320–326 es_ES
dc.relation.references CNE (Centro Nacional de Epidemiología) (2011) Available at http://revista.isciii.es/index.php/bes/article/view/339 es_ES
dc.relation.references Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD (2006) Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol 36:99–133 es_ES
dc.relation.references Delgado-Saborit JM, Esteve-Cano V (2007) Field comparison of passive samplers versus UV-photometric analyser to measure surface ozone in a Mediterranean area. J Environ Monit 9:610–615 es_ES
dc.relation.references Diaz-Villasenor A, Burns AL, Hiriart M, Cebrian ME, Ostrosky-Wegman P (2007) Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicol Appl Pharmacol 225:123–133 es_ES
dc.relation.references Directive 1999/30/EC of the European Parliament and of the Council of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air es_ES
dc.relation.references Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air es_ES
dc.relation.references Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641 es_ES
dc.relation.references Englyst V, Lundstrom NG, Gerhardsson L, Rylander L, Nordberg G (2001) Lung cancer risks among lead smelter workers also exposed to arsenic. Sci Total Environ 273:77–82 es_ES
dc.relation.references Esteve V, Peris G (2000) Ionic characterization of size fractionated airborne tropospheric particulate at Castellón (Spain). Journal of Aerosol Science 31:346–347 es_ES
dc.relation.references Esteve V, Ramos A (1999) Materiales para la decoración cerámica. Recomendaciones para su correcta manipulación es_ES
dc.relation.references Fang GC, Chang CN, Wu YS, Fu PPC, Yang DG, Chu CC (1999) Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan. Sci Total Environ 234:203–212 es_ES
dc.relation.references Fernandez-Camacho R, Rodriguez S, de la Rosa J, de la Campa AMS, Viana M, Alastuey A et al (2010) Ultrafine particle formation in the inland sea breeze airflow in southwest Europe. Atmos Chem Phys 10:9615–9630 es_ES
dc.relation.references Figueroa DA, Rodriguez-Sierra CJ, Jimenez-Velez BD (2006) Concentrations of Ni and V, other heavy metals, arsenic, elemental and organic carbon in atmospheric fine particles (PM2.5) from Puerto Rico. Toxicol Ind Health 22:87–99 es_ES
dc.relation.references Gao Y, Nelson ED, Field MP, Ding Q, Li H, Sherrell RM, Gigliotti CL, Van Ry DA, Glenn TR, Eisenreich SJ (2002) Characterization of atmospheric trace elements on PM(2.5) particulate matter over the New York–New Jersey harbor estuary. Atmos Environ 36:1077–1086 es_ES
dc.relation.references Halek F, Keyanpour-Rad M, Darbani RM, Kavousirahim A (2010) Concentrations and source assessment of some atmospheric trace elements in northwestern region of Tehran, Iran. Bull Environ Contam Toxicol 84:185–190 es_ES
dc.relation.references Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385 es_ES
dc.relation.references He ZLL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140 es_ES
dc.relation.references Hetland RB, Refsnes M, Myran T, Johansen BV, Uthus N, Schwarze PE (2000) Mineral and/or metal content as critical determinants of particle-induced release of IL-6 and IL-8 from A549 cells. J Toxicol Environ Health A 60:47–65 es_ES
dc.relation.references Ho KF, Lee SC, Yu JC, Zou SC, Fung K (2002) Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. Sci Total Environ 300:59–67 es_ES
dc.relation.references Holmes CW, Miller R (2004) Atmospherically transported elements and deposition in the southeastern United States: local or transoceanic? Appl Geochem 19:1189–1200 es_ES
dc.relation.references IARC (2009) IARC monographs on the evaluation of carcinogenic risks to humans. Complete list of agents evaluated and their classification. IARC Monograph 100C-6 2012. Available at http://monographs.iarc.fr/ENG/Classification/index.php es_ES
dc.relation.references Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107 es_ES
dc.relation.references Karagolge Z, Alkan M, Donmez B (2002) Removal of arsenic from colemanite ore containing arsenic by froth flotation. J Chem Eng Jpn 35:217–225 es_ES
dc.relation.references Lewis AS, Reid KR, Pollock MC, Campleman SL (2012) Speciated arsenic in air: measurement methodology and risk assessment considerations. J Air Waste Manage Assoc 62:2–17 es_ES
dc.relation.references Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235 es_ES
dc.relation.references Marcazzan GM, Vaccaro S, Valli G, Vecchi R (2001) Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos Environ 35:4639–4650 es_ES
dc.relation.references Millán MM, Salvador R, Mantilla E (1997) Photooxidant dynamics in the Mediterranean basin in summer: results from European research projects. J Geophys Res 102(D7):8811–8823 es_ES
dc.relation.references Minguillon MC, Monfort E, Querol X, Alastuey A, Celades I, Miro JV (2009) Effect of ceramic industrial particulate emission control on key components of ambient PM(10). J Environ Manage 90:2558–2567 es_ES
dc.relation.references Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA et al (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162:1037–1049 es_ES
dc.relation.references Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D et al (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41:8557–8566 es_ES
dc.relation.references Pallares S, Vicente AB, Jordan MM, Sanfeliu T (2007) Study of the levels of concentration of As, Cd and Ni in a ceramic cluster. Water Air Soil Pollut 180:51–64 es_ES
dc.relation.references Putaud JP, Raes F, Van Dingenen R, Bruggemann E, Facchini MC, Decesari S et al (2004) European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595 es_ES
dc.relation.references Querol-Balaguer MA, Delgado-Saborit JM, Ramos-Pino F, Amigó-Descarrega JM, Esteve-Cano V (2004) Chemical characterization of PM10 airborne particulate matter at the ceramic cluster of Castellon (Spain). Geophys Res Lett 6:6108 es_ES
dc.relation.references Querol X, Alastuey A, Moreno T, Viana MM, Castillo S, Pey J et al (2008) Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42:3964–3979 es_ES
dc.relation.references Querol X, Alastuey A, Rodriguez S, Plana F, Mantilla E, Ruiz CR (2001) Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos Environ 35:845–858 es_ES
dc.relation.references Querol X, Alastuey A, Rodriguez S, Viana MM, Artinano B, Salvador P et al (2004a) Levels of particulate matter in rural, urban and industrial sites in Spain. Sci Total Environ 334:359–376 es_ES
dc.relation.references Querol X, Alastuey A, Ruiz CR, Artinano B, Hansson HC, Harrison RM et al (2004b) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38:6547–6555 es_ES
dc.relation.references Querol X, Minguillon MC, Alastuey A, Monfort E, Mantilla E, Sanz MJ et al (2007) Impact of the implementation of PM abatement technology on the ambient air levels of metals in a highly industrialised area. Atmos Environ 41:1026–1040 es_ES
dc.relation.references Rampazzo G, Masiol M, Visin F, Rampado E, Pavoni B (2008) Geochemical characterization of PM10 emitted by glass factories in Murano, Venice (Italy). Chemosphere 71:2068–2075 es_ES
dc.relation.references Roy P, Saha A (2002) Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 82:38–45 es_ES
dc.relation.references Sanchez-Rodas D, Sanchez de la Campa A, Oliveira V, de la Rosa J (2012) Health implications of the distribution of arsenic species in airborne particulate matter. J Inorg Biochem 108:112–114 es_ES
dc.relation.references Sanchez de la Campa AM, de la Rosa J, Gonzalez-Castanedo Y, Fernandez-Camacho R, Alastuey A, Querol X et al (2011) Levels and chemical composition of pm in a city near a large Cu-smelter in Spain. J Environ Monit 13:1276–1287 es_ES
dc.relation.references Sanchez de la Campa AM, de la Rosa JD, Sanchez-Rodas D, Oliveira V, Alastuey A, Querol X et al (2008) Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmos Environ 42:6487–6495 es_ES
dc.relation.references Santacatalina M, Yubero E, Mantilla E, Carratlá A (2011) Relevance of the economic crisis in chemical PM10 changes in a semi-arid industrial environment. Environ Monit Assess 184:6827–6844 es_ES
dc.relation.references Tsopelas F, Tsakanika L-A, Ochsenkuehn-Petropoulou M (2008) Extraction of arsenic species from airborne particulate filters—application to an industrial area of Greece. Microchem J 89:165–170 es_ES
dc.relation.references Vahidnia A, Van der Voet GB, de Wolf FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832 es_ES
dc.relation.references Vickery W, Moreno A, Monfort E (1998) Influencia de las materias primas borácicas en las emisiones de los hornos de fusión de fritas. Qualicer 98:205–214 es_ES
dc.relation.references von Schneidemesser E, Stone EA, Quraishi TA, Shafer MM, Schauer JJ (2010) Toxic metals in the atmosphere in Lahore, Pakistan. Sci Total Environ 408:1640–1648 es_ES
dc.relation.references WHO (2000) Air quality guidelines for Europe. WHO Regional Office for Europe Copenhagen es_ES


This item appears in the following Collection(s)

Show simple item record