- -

One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Marqués, Paula es_ES
dc.contributor.author Hernández Garrido, Juan Carlos es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2015-09-15T07:33:20Z
dc.date.available 2015-09-15T07:33:20Z
dc.date.issued 2014
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/54629
dc.description.abstract Cyclohexanone oxime is formed from nitrobenzene with 97% yield in a one-pot reaction catalysed by palladium and gold nanoparticles on carbon. The reaction is carried out under hydrogen at 60 8C and the overall transformation involves a multi-step catalysed mechanism from which intermediates and catalytically active species have been identified. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Selective Phenol Hydrogenation es_ES
dc.subject Epsilon-Caprolactam es_ES
dc.subject Nitro-Compounds es_ES
dc.subject Gold Catalysts es_ES
dc.subject Oxidation es_ES
dc.subject Amines es_ES
dc.subject Acid es_ES
dc.subject Reduction es_ES
dc.subject Clusters es_ES
dc.subject Oxygen es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cc47693f
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Rubio Marqués, P.; Hernández Garrido, JC.; Leyva Perez, A.; Corma Canós, A. (2014). One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst. Chemical Communications. 50(14):1645-1647. doi:10.1039/c3cc47693f es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1645 es_ES
dc.description.upvformatpfin 1647 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 280840 es_ES
dc.identifier.eissn 1364-548X
dc.description.references Ichihashi, H., & Sato, H. (2001). The development of new heterogeneous catalytic processes for the production of ε-caprolactam. Applied Catalysis A: General, 221(1-2), 359-366. doi:10.1016/s0926-860x(01)00887-0 es_ES
dc.description.references Calderon-Moreno, J. M., Pol, V. G., & Popa, M. (2011). Single-Step Synthesis of Ruthenium Catalytic Nanocrystallites in a Stable Carbon Support. European Journal of Inorganic Chemistry, 2011(18), 2856-2862. doi:10.1002/ejic.201001360 es_ES
dc.description.references Mokaya, R., & Poliakoff, M. (2005). A cleaner way to nylon? Nature, 437(7063), 1243-1244. doi:10.1038/4371243a es_ES
dc.description.references Stahl, S. S. (2005). CHEMISTRY: Palladium-Catalyzed Oxidation of Organic Chemicals with O2. Science, 309(5742), 1824-1826. doi:10.1126/science.1114666 es_ES
dc.description.references Thomas, J. M., Raja, R., Sankar, G., & Bell, R. G. (1999). Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature, 398(6724), 227-230. doi:10.1038/18417 es_ES
dc.description.references Matos, J., & Corma, A. (2011). Selective phenol hydrogenation in aqueous phase on Pd-based catalysts supported on hybrid TiO2-carbon materials. Applied Catalysis A: General, 404(1-2), 103-112. doi:10.1016/j.apcata.2011.07.018 es_ES
dc.description.references Liu, H., Jiang, T., Han, B., Liang, S., & Zhou, Y. (2009). Selective Phenol Hydrogenation to Cyclohexanone Over a Dual Supported Pd–Lewis Acid Catalyst. Science, 326(5957), 1250-1252. doi:10.1126/science.1179713 es_ES
dc.description.references Sikhwivhilu, L. M., Coville, N. J., Naresh, D., Chary, K. V. R., & Vishwanathan, V. (2007). Nanotubular titanate supported palladium catalysts: The influence of structure and morphology on phenol hydrogenation activity. Applied Catalysis A: General, 324, 52-61. doi:10.1016/j.apcata.2007.03.004 es_ES
dc.description.references Rode, C. V., Joshi, U. D., Sato, O., & Shirai, M. (2003). Catalytic ring hydrogenation of phenol under supercritical carbon dioxide. Chemical Communications, (15), 1960. doi:10.1039/b304344d es_ES
dc.description.references Suzuki, K., Watanabe, T., & Murahashi, S.-I. (2008). Aerobic Oxidation of Primary Amines to Oximes Catalyzed by DPPH and WO3/Al2O3. Angewandte Chemie International Edition, 47(11), 2079-2081. doi:10.1002/anie.200705002 es_ES
dc.description.references Thomas, J. M., & Raja, R. (2005). Design of a «green» one-step catalytic production of  -caprolactam (precursor of nylon-6). Proceedings of the National Academy of Sciences, 102(39), 13732-13736. doi:10.1073/pnas.0506907102 es_ES
dc.description.references Sato, K. (1998). A «Green» Route to Adipic Acid: Direct Oxidation of Cyclohexenes with 30 Percent Hydrogen Peroxide. Science, 281(5383), 1646-1647. doi:10.1126/science.281.5383.1646 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 es_ES
dc.description.references Nicolaou, K. C., Edmonds, D. J., & Bulger, P. G. (2006). Cascade Reactions in Total Synthesis. Angewandte Chemie International Edition, 45(43), 7134-7186. doi:10.1002/anie.200601872 es_ES
dc.description.references (s. f.). doi:10.1021/cr950023 es_ES
dc.description.references Shin, J. Y., Jung, D. J., & Lee, S. (2013). A Multifunction Pd/Sc(OTf)3/Ionic Liquid Catalyst System for the Tandem One-Pot Conversion of Phenol to ε-Caprolactam. ACS Catalysis, 3(4), 525-528. doi:10.1021/cs400009w es_ES
dc.description.references Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401 es_ES
dc.description.references Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie International Edition, 46(38), 7266-7269. doi:10.1002/anie.200700823 es_ES
dc.description.references Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383 es_ES
dc.description.references Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159 es_ES
dc.description.references Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114b es_ES
dc.description.references Hollmann, D., Bähn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119 es_ES
dc.description.references Barluenga, J., Jiménez-Aquino, A., Aznar, F., & Valdés, C. (2009). Modular Synthesis of Indoles from Imines ando-Dihaloarenes oro-Chlorosulfonates by a Pd-Catalyzed Cascade Process. Journal of the American Chemical Society, 131(11), 4031-4041. doi:10.1021/ja808652a es_ES
dc.description.references Zhang, X., & Corma, A. (2008). Supported Gold(III) Catalysts for Highly Efficient Three-Component Coupling Reactions. Angewandte Chemie, 120(23), 4430-4433. doi:10.1002/ange.200800098 es_ES
dc.description.references Shimizu, K., Yamamoto, T., Tai, Y., & Satsuma, A. (2011). Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime by alumina-supported gold cluster catalysts. Journal of Molecular Catalysis A: Chemical, 345(1-2), 54-59. doi:10.1016/j.molcata.2011.05.018 es_ES
dc.description.references Jeyabharathi, C., Senthil Kumar, S., Kiruthika, G. V. M., & Phani, K. L. N. (2010). Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions. Angewandte Chemie International Edition, 49(16), 2925-2928. doi:10.1002/anie.200905614 es_ES
dc.description.references Sinha, A. K., Basu, M., Sarkar, S., Pradhan, M., & Pal, T. (2013). Synthesis of gold nanochains via photoactivation technique and their catalytic applications. Journal of Colloid and Interface Science, 398, 13-21. doi:10.1016/j.jcis.2013.01.061 es_ES
dc.description.references Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem