Mostrar el registro sencillo del ítem
dc.contributor.author | Bru García, Rafael | es_ES |
dc.contributor.author | Marín Mateos-Aparicio, José | es_ES |
dc.contributor.author | Mas Marí, José | es_ES |
dc.contributor.author | Tuma, Miroslav | es_ES |
dc.date.accessioned | 2015-09-15T14:56:09Z | |
dc.date.available | 2015-09-15T14:56:09Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1064-8275 | |
dc.identifier.uri | http://hdl.handle.net/10251/54661 | |
dc.description.abstract | New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the conjugate gradient for least squares (CGLS) method are described. First, direct preconditioning of the normal equations by the balanced incomplete factorization (BIF) for symmetric and positive definite matrices is studied, and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU factors of an n × n submatrix of the system matrix is our second approach. A new way to find this submatrix based on a specific weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic and implementational features of the new approaches and put them into the context of current progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use of the weighted transversal helps to improve the LU-based approach. | es_ES |
dc.description.sponsorship | This work was partially supported by Spanish grant MTM 2010-18674 and the project 13-06684S of the Grant agency of the Czech Republic. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Society for Industrial and Applied Mathematics | es_ES |
dc.relation.ispartof | SIAM Journal on Scientific Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Preconditioned iterative methods | es_ES |
dc.subject | Incomplete decompositions | es_ES |
dc.subject | Approximate inverses | es_ES |
dc.subject | Linear least squares | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Preconditioned iterative methods for solving linear least squares problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1137/130931588 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//13-06684S/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18674/ES/SOLUCION ITERATIVA DE SISTEMAS LINEALES Y APLICACIONES/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bru García, R.; Marín Mateos-Aparicio, J.; Mas Marí, J.; Tuma, M. (2014). Preconditioned iterative methods for solving linear least squares problems. SIAM Journal on Scientific Computing. 36(4):2002-2022. https://doi.org/10.1137/130931588 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1137/130931588 | es_ES |
dc.description.upvformatpinicio | 2002 | es_ES |
dc.description.upvformatpfin | 2022 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 269367 | es_ES |
dc.contributor.funder | Czech Science Foundation | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |