- -

Preconditioned iterative methods for solving linear least squares problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preconditioned iterative methods for solving linear least squares problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bru García, Rafael es_ES
dc.contributor.author Marín Mateos-Aparicio, José es_ES
dc.contributor.author Mas Marí, José es_ES
dc.contributor.author Tuma, Miroslav es_ES
dc.date.accessioned 2015-09-15T14:56:09Z
dc.date.available 2015-09-15T14:56:09Z
dc.date.issued 2014
dc.identifier.issn 1064-8275
dc.identifier.uri http://hdl.handle.net/10251/54661
dc.description.abstract New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the conjugate gradient for least squares (CGLS) method are described. First, direct preconditioning of the normal equations by the balanced incomplete factorization (BIF) for symmetric and positive definite matrices is studied, and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU factors of an n × n submatrix of the system matrix is our second approach. A new way to find this submatrix based on a specific weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic and implementational features of the new approaches and put them into the context of current progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use of the weighted transversal helps to improve the LU-based approach. es_ES
dc.description.sponsorship This work was partially supported by Spanish grant MTM 2010-18674 and the project 13-06684S of the Grant agency of the Czech Republic. en_EN
dc.language Inglés es_ES
dc.publisher Society for Industrial and Applied Mathematics es_ES
dc.relation.ispartof SIAM Journal on Scientific Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Preconditioned iterative methods es_ES
dc.subject Incomplete decompositions es_ES
dc.subject Approximate inverses es_ES
dc.subject Linear least squares es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Preconditioned iterative methods for solving linear least squares problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1137/130931588
dc.relation.projectID info:eu-repo/grantAgreement/GACR//13-06684S/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18674/ES/SOLUCION ITERATIVA DE SISTEMAS LINEALES Y APLICACIONES/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bru García, R.; Marín Mateos-Aparicio, J.; Mas Marí, J.; Tuma, M. (2014). Preconditioned iterative methods for solving linear least squares problems. SIAM Journal on Scientific Computing. 36(4):2002-2022. https://doi.org/10.1137/130931588 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1137/130931588 es_ES
dc.description.upvformatpinicio 2002 es_ES
dc.description.upvformatpfin 2022 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 269367 es_ES
dc.contributor.funder Czech Science Foundation
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem