- -

Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Soleymani, Fazlollah es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2015-09-21T08:51:43Z
dc.date.available 2015-09-21T08:51:43Z
dc.date.issued 2014-10-01
dc.identifier.issn 0096-3003
dc.identifier.uri http://hdl.handle.net/10251/54856
dc.description.abstract This paper deals with the real dynamical analysis of iterative methods for solving nonlinear systems on vectorial quadratic polynomials. We use the extended concept of critical point and propose an easy test to determine the stability of fixed points to multivariate rational functions. Moreover, an Scaling Theorem for different known methods is satisfied. We use these tools to analyze the dynamics of the operator associated to known iterative methods on vectorial quadratic polynomials of two variables. The dynamical behavior of Newton's method is very similar to the obtained in the scalar case, but this is not the case for other schemes. Some procedures of different orders of convergence have been analyzed under this point of view and some "dangerous" numerical behavior have been found, as attracting strange fixed points or periodic orbits. 2014 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and Universitat Politecnica de Valencia SP20120474. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics and Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear system of equations es_ES
dc.subject Iterative method es_ES
dc.subject Basin of attraction es_ES
dc.subject Dynamical plane es_ES
dc.subject Stability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.amc.2014.07.010
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120474/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR. (2014). Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension?. Applied Mathematics and Computation. 244:398-412. https://doi.org/10.1016/j.amc.2014.07.010 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.amc.2014.07.010 es_ES
dc.description.upvformatpinicio 398 es_ES
dc.description.upvformatpfin 412 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 244 es_ES
dc.relation.senia 269010
dc.identifier.eissn 1873-5649
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem