Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2012). Increasing the convergence order of an iterative method for nonlinear systems. Applied Mathematics Letters. 25(12):2369-2374. https://doi.org/10.1016/j.aml.2012.07.005
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/54861
Title:
|
Increasing the convergence order of an iterative method for nonlinear systems
|
Author:
|
Cordero Barbero, Alicia
Hueso Pagoaga, José Luís
Martínez Molada, Eulalia
Torregrosa Sánchez, Juan Ramón
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
In this work we introduce a technique for solving nonlinear systems that improves the order of convergence of any given iterative method which uses the Newton iteration as a predictor. The main idea is to compose a given ...[+]
In this work we introduce a technique for solving nonlinear systems that improves the order of convergence of any given iterative method which uses the Newton iteration as a predictor. The main idea is to compose a given iterative method of order p with a modification of the Newton method that introduces just one evaluation of the function, obtaining a new method of order p+2. By applying this procedure to known methods of order three and four, we obtain new methods of order five and six, respectively. The efficiency index and the computational effort of the new methods are checked. We also perform different numerical tests that confirm the theoretical results and allow us to compare these methods with the ones from which have been derived and with the classical Newton method. © 2012 Elsevier Ltd. All rights reserved.
[-]
|
Subjects:
|
Convergence order
,
Efficiency index
,
Iterative function
,
Nonlinear equation
,
Computational effort
,
Iterative functions
,
Newton iterations
,
Numerical tests
,
Order of convergence
,
Theoretical result
,
Computational efficiency
|
Copyrigths:
|
Cerrado |
Source:
|
Applied Mathematics Letters. (issn:
0893-9659
) (eissn:
1873-5452
)
|
DOI:
|
10.1016/j.aml.2012.07.005
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.aml.2012.07.005
|
Project ID:
|
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/
info:eu-repo/grantAgreement/UPV//PAID-06-10-2285/
|
Thanks:
|
This research was supported by Ministerio de Ciencia e Innovacion MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de ValenciaPAID-06-2010-2285.
|
Type:
|
Artículo
|