Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Fardi, Mojtaba | es_ES |
dc.contributor.author | Ghasemi, Mehdi | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2015-09-21T12:04:10Z | |
dc.date.available | 2015-09-21T12:04:10Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1110-757X | |
dc.identifier.uri | http://hdl.handle.net/10251/54887 | |
dc.description.abstract | We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorithms with known ones and confirm the theoretical results. | es_ES |
dc.description.sponsorship | The authors would like to thank the referee for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-06-2010-2285. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Journal of Applied Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Solving nonlinear equations | es_ES |
dc.subject | Order | es_ES |
dc.subject | Variants | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A family of iterative methods with accelerated eighth-order convergence | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2012/282561 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-2010-2285/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2012). A family of iterative methods with accelerated eighth-order convergence. Journal of Applied Mathematics. 2012. https://doi.org/10.1155/2012/282561 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2012/282561 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2012 | es_ES |
dc.relation.senia | 233920 | es_ES |
dc.identifier.eissn | 1687-0042 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 | es_ES |
dc.description.references | Homeier, H. H. H. (2005). On Newton-type methods with cubic convergence. Journal of Computational and Applied Mathematics, 176(2), 425-432. doi:10.1016/j.cam.2004.07.027 | es_ES |
dc.description.references | Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 | es_ES |
dc.description.references | King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 | es_ES |
dc.description.references | Chun, C. (2007). Some variants of King’s fourth-order family of methods for nonlinear equations. Applied Mathematics and Computation, 190(1), 57-62. doi:10.1016/j.amc.2007.01.006 | es_ES |
dc.description.references | Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105 | es_ES |
dc.description.references | Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 | es_ES |
dc.description.references | Maheshwari, A. K. (2009). A fourth order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211(2), 383-391. doi:10.1016/j.amc.2009.01.047 | es_ES |
dc.description.references | Neta, B. (1981). On a family of multipoint methods for non-linear equations. International Journal of Computer Mathematics, 9(4), 353-361. doi:10.1080/00207168108803257 | es_ES |
dc.description.references | Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004 | es_ES |
dc.description.references | Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004 | es_ES |
dc.description.references | Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 | es_ES |