- -

A family of iterative methods with accelerated eighth-order convergence

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A family of iterative methods with accelerated eighth-order convergence

Show simple item record

Files in this item

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Fardi, Mojtaba es_ES
dc.contributor.author Ghasemi, Mehdi es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2015-09-21T12:04:10Z
dc.date.available 2015-09-21T12:04:10Z
dc.date.issued 2012
dc.identifier.issn 1110-757X
dc.identifier.uri http://hdl.handle.net/10251/54887
dc.description.abstract We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorithms with known ones and confirm the theoretical results. es_ES
dc.description.sponsorship The authors would like to thank the referee for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-06-2010-2285. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Journal of Applied Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Solving nonlinear equations es_ES
dc.subject Order es_ES
dc.subject Variants es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A family of iterative methods with accelerated eighth-order convergence es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2012/282561
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-2010-2285/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2012). A family of iterative methods with accelerated eighth-order convergence. Journal of Applied Mathematics. 2012. https://doi.org/10.1155/2012/282561 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2012/282561 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2012 es_ES
dc.relation.senia 233920 es_ES
dc.identifier.eissn 1687-0042
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 es_ES
dc.description.references Homeier, H. H. H. (2005). On Newton-type methods with cubic convergence. Journal of Computational and Applied Mathematics, 176(2), 425-432. doi:10.1016/j.cam.2004.07.027 es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 es_ES
dc.description.references Chun, C. (2007). Some variants of King’s fourth-order family of methods for nonlinear equations. Applied Mathematics and Computation, 190(1), 57-62. doi:10.1016/j.amc.2007.01.006 es_ES
dc.description.references Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105 es_ES
dc.description.references Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 es_ES
dc.description.references Maheshwari, A. K. (2009). A fourth order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211(2), 383-391. doi:10.1016/j.amc.2009.01.047 es_ES
dc.description.references Neta, B. (1981). On a family of multipoint methods for non-linear equations. International Journal of Computer Mathematics, 9(4), 353-361. doi:10.1080/00207168108803257 es_ES
dc.description.references Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004 es_ES
dc.description.references Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004 es_ES
dc.description.references Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES


This item appears in the following Collection(s)

Show simple item record