Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Penkova Vassileva, María | es_ES |
dc.date.accessioned | 2015-09-22T07:16:56Z | |
dc.date.available | 2015-09-22T07:16:56Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1110-757X | |
dc.identifier.uri | http://hdl.handle.net/10251/54914 | |
dc.description.abstract | A new set of predictor-corrector iterative methods with increasing order of convergence is proposed in order to estimate the solution of nonlinear systems. Our aim is to achieve high order of convergence with few Jacobian and/or functional evaluations. Moreover, we pay special attention to the number of linear systems to be solved in the process, with different matrices of coefficients. On the other hand, by applying the pseudocomposition technique on each proposed scheme we get to increase their order of convergence, obtaining new efficient high-order methods. We use the classical efficiency index to compare the obtained procedures and make some numerical test, that allow us to confirm the theoretical results. | es_ES |
dc.description.sponsorship | The authors would like to thank the referees for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT Republica Dominicana. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Journal of Applied Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Newton's method | es_ES |
dc.subject | Variants | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | New predictor-corrector methods with high efficiency for solving nonlinear systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2012/709843 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2012). New predictor-corrector methods with high efficiency for solving nonlinear systems. Journal of Applied Mathematics. 2012. https://doi.org/10.1155/2012/709843 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2012/709843 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2012 | es_ES |
dc.relation.senia | 237514 | es_ES |
dc.identifier.eissn | 1687-0042 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |
dc.description.references | Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 | es_ES |
dc.description.references | He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043 | es_ES |
dc.description.references | Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-y | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z | es_ES |
dc.description.references | Nikkhah-Bahrami, M., & Oftadeh, R. (2009). An effective iterative method for computing real and complex roots of systems of nonlinear equations. Applied Mathematics and Computation, 215(5), 1813-1820. doi:10.1016/j.amc.2009.07.028 | es_ES |
dc.description.references | Shin, B.-C., Darvishi, M. T., & Kim, C.-H. (2010). A comparison of the Newton–Krylov method with high order Newton-like methods to solve nonlinear systems. Applied Mathematics and Computation, 217(7), 3190-3198. doi:10.1016/j.amc.2010.08.051 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006 | es_ES |
dc.description.references | Dayton, B. H., Li, T.-Y., & Zeng, Z. (2011). Multiple zeros of nonlinear systems. Mathematics of Computation, 80(276), 2143-2143. doi:10.1090/s0025-5718-2011-02462-2 | es_ES |
dc.description.references | Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 | es_ES |