- -

New predictor-corrector methods with high efficiency for solving nonlinear systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New predictor-corrector methods with high efficiency for solving nonlinear systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Penkova Vassileva, María es_ES
dc.date.accessioned 2015-09-22T07:16:56Z
dc.date.available 2015-09-22T07:16:56Z
dc.date.issued 2012
dc.identifier.issn 1110-757X
dc.identifier.uri http://hdl.handle.net/10251/54914
dc.description.abstract A new set of predictor-corrector iterative methods with increasing order of convergence is proposed in order to estimate the solution of nonlinear systems. Our aim is to achieve high order of convergence with few Jacobian and/or functional evaluations. Moreover, we pay special attention to the number of linear systems to be solved in the process, with different matrices of coefficients. On the other hand, by applying the pseudocomposition technique on each proposed scheme we get to increase their order of convergence, obtaining new efficient high-order methods. We use the classical efficiency index to compare the obtained procedures and make some numerical test, that allow us to confirm the theoretical results. es_ES
dc.description.sponsorship The authors would like to thank the referees for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT Republica Dominicana. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Journal of Applied Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Newton's method es_ES
dc.subject Variants es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title New predictor-corrector methods with high efficiency for solving nonlinear systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2012/709843
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2012). New predictor-corrector methods with high efficiency for solving nonlinear systems. Journal of Applied Mathematics. 2012. https://doi.org/10.1155/2012/709843 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2012/709843 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2012 es_ES
dc.relation.senia 237514 es_ES
dc.identifier.eissn 1687-0042
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 es_ES
dc.description.references He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043 es_ES
dc.description.references Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-y es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z es_ES
dc.description.references Nikkhah-Bahrami, M., & Oftadeh, R. (2009). An effective iterative method for computing real and complex roots of systems of nonlinear equations. Applied Mathematics and Computation, 215(5), 1813-1820. doi:10.1016/j.amc.2009.07.028 es_ES
dc.description.references Shin, B.-C., Darvishi, M. T., & Kim, C.-H. (2010). A comparison of the Newton–Krylov method with high order Newton-like methods to solve nonlinear systems. Applied Mathematics and Computation, 217(7), 3190-3198. doi:10.1016/j.amc.2010.08.051 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006 es_ES
dc.description.references Dayton, B. H., Li, T.-Y., & Zeng, Z. (2011). Multiple zeros of nonlinear systems. Mathematics of Computation, 80(276), 2143-2143. doi:10.1090/s0025-5718-2011-02462-2 es_ES
dc.description.references Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem