- -

Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author Climent, Andreu M. es_ES
dc.contributor.author Millet Roig, José es_ES
dc.contributor.author Arenal, Angel es_ES
dc.contributor.author Fernandez-Aviles, Francisco es_ES
dc.contributor.author Jalife, José es_ES
dc.contributor.author Atienza, Felipe es_ES
dc.contributor.author Berenfeld, Omer es_ES
dc.date.accessioned 2015-09-28T11:14:27Z
dc.date.issued 2013-01
dc.identifier.issn 1941-3149
dc.identifier.uri http://hdl.handle.net/10251/55160
dc.description.abstract Background—Ablation of high-frequency sources in patients with atrial fibrillation (AF) is an effective therapy to restore sinus rhythm. However, this strategy may be ineffective in patients without a significant dominant frequency (DF) gradient. The aim of this study was to investigate whether sites with high-frequency activity in human AF can be identified noninvasively, which should help intervention planning and therapy. Methods and Results—In 14 patients with a history of AF, 67-lead body surface recordings were simultaneously registered with 15 endocardial electrograms from both atria including the highest DF site, which was predetermined by atrial-wide real-time frequency electroanatomical mapping. Power spectra of surface leads and the body surface location of the highest DF site were compared with intracardiac information. Highest DFs found on specific sites of the torso showed a significant correlation with DFs found in the nearest atrium (ρ=0.96 for right atrium and ρ=0.92 for left atrium) and the DF gradient between them (ρ=0.93). The spatial distribution of power on the surface showed an inverse relationship between the frequencies versus the power spread area, consistent with localized fast sources as the AF mechanism with fibrillatory conduction elsewhere. Conclusions—Spectral analysis of body surface recordings during AF allows a noninvasive characterization of the global distribution of the atrial DFs and the identification of the atrium with the highest frequency, opening the possibility for improved noninvasive personalized diagnosis and treatment. (Circ Arrhythm Electrophysiol. 2013;6:294-301.) es_ES
dc.description.sponsorship Dr Atienza served on the advisory board of Medtronic and has received research funding from St. Jude Medical Spain. Dr Jalife is a consultant for Topera, Inc., and for Rhythm Solutions, Inc. He is a coinvestigator in a research grant from Gilead, Inc. Dr Berenfeld is a cofounder and chief scientist of Rhythm Solutions, Inc. None of the companies disclosed financed the research described in this article. The other authors have no conflicts to report. en_EN
dc.language Inglés es_ES
dc.publisher American Heart Association es_ES
dc.relation.ispartof Circulation: Arrhythmia and Electrophysiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Body surface potential mapping es_ES
dc.subject Catheter ablation es_ES
dc.subject Fourier analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1161/CIRCEP.112.000167
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-13939/ES/Desarrollo De Tecnicas Avanzadas De Analisis Y Caracterizacion De Mapas De Propagacion Para La Ayuda Al Diagnostico Electrocardiografico./ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P01HL087226/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P01HL039707/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//AP-145%2F10/ES/Valoración del efecto de la ablación sobre la distribución de frecuencias dominantes mediante cartografía eléctrica no invasiva de alta densidad de la fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F093/ES/Análisis de los efectos de las modificaciones electrofisiológicas sobre los procesos fibrilatorios/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSC//RD06%2F0014/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Guillem Sánchez, MS.; Climent, AM.; Millet Roig, J.; Arenal, A.; Fernandez-Aviles, F.; Jalife, J.; Atienza, F.... (2013). Noninvasive Localization of Maximal Frequency Sites of Atrial Fibrillation by Body Surface Potential Mapping. Circulation: Arrhythmia and Electrophysiology. 6(2):294-301. https://doi.org/10.1161/CIRCEP.112.000167 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1161/CIRCEP.112.000167 es_ES
dc.description.upvformatpinicio 294 es_ES
dc.description.upvformatpfin 301 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 245613 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Sanidad y Consumo es_ES
dc.contributor.funder University of Michigan es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder St. Jude Medical es_ES
dc.contributor.funder Sociedad Española de Cardiología es_ES
dc.contributor.funder Centro Nacional de Investigaciones Cardiovasculares es_ES
dc.contributor.funder Biomedical Engineering Department, University of Michigan es_ES
dc.contributor.funder Leducq Foundation es_ES
dc.description.references Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 es_ES
dc.description.references NARAYAN, S. M., KRUMMEN, D. E., & RAPPEL, W.-J. (2012). Clinical Mapping Approach To Diagnose Electrical Rotors and Focal Impulse Sources for Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 23(5), 447-454. doi:10.1111/j.1540-8167.2012.02332.x es_ES
dc.description.references Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 es_ES
dc.description.references Hsu, L.-F., Jaïs, P., Keane, D., Wharton, J. M., Deisenhofer, I., Hocini, M., … Haïssaguerre, M. (2004). Atrial Fibrillation Originating From Persistent Left Superior Vena Cava. Circulation, 109(7), 828-832. doi:10.1161/01.cir.0000116753.56467.bc es_ES
dc.description.references Di Biase, L., Burkhardt, J. D., Mohanty, P., Sanchez, J., Mohanty, S., Horton, R., … Natale, A. (2010). Left Atrial Appendage. Circulation, 122(2), 109-118. doi:10.1161/circulationaha.109.928903 es_ES
dc.description.references Hocini, M., Nault, I., Wright, M., Veenhuyzen, G., Narayan, S. M., Jaïs, P., … Haïssaguerre, M. (2010). Disparate Evolution of Right and Left Atrial Rate During Ablation of Long-Lasting Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 55(10), 1007-1016. doi:10.1016/j.jacc.2009.09.060 es_ES
dc.description.references Lazar, S., Dixit, S., Marchlinski, F. E., Callans, D. J., & Gerstenfeld, E. P. (2004). Presence of Left-to-Right Atrial Frequency Gradient in Paroxysmal but Not Persistent Atrial Fibrillation in Humans. Circulation, 110(20), 3181-3186. doi:10.1161/01.cir.0000147279.91094.5e es_ES
dc.description.references Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 es_ES
dc.description.references GUILLEM, M. S., CLIMENT, A. M., CASTELLS, F., HUSSER, D., MILLET, J., ARYA, A., … BOLLMANN, A. (2009). Noninvasive Mapping of Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 20(5), 507-513. doi:10.1111/j.1540-8167.2008.01356.x es_ES
dc.description.references Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., … Berenfeld, O. (2006). Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans. Circulation, 114(23), 2434-2442. doi:10.1161/circulationaha.106.633735 es_ES
dc.description.references Castells, F., Mora, C., Rieta, J. J., Moratal-Pérez, D., & Millet, J. (2005). Estimation of atrial fibrillatory wave from single-lead atrial fibrillation electrocardiograms using principal component analysis concepts. Medical & Biological Engineering & Computing, 43(5), 557-560. doi:10.1007/bf02351028 es_ES
dc.description.references BERENFELD, O., MANDAPATI, R., DIXIT, S., SKANES, A. C., CHEN, J., MANSOUR, M., & JALIFE, J. (2000). Spatially Distributed Dominant Excitation Frequencies Reveal Hidden Organization in Atrial Fibrillation in the Langendorff-Perfused Sheep Heart. Journal of Cardiovascular Electrophysiology, 11(8), 869-879. doi:10.1111/j.1540-8167.2000.tb00066.x es_ES
dc.description.references ROITHINGER, F. X., Groenewegen, A. S., KARCH, M. R., STEINER, P. R., ELLIS, W. S., & LESH, M. D. (1998). Organized Activation During Atrial Fibrillation in Man. Journal of Cardiovascular Electrophysiology, 9(5), 451-461. doi:10.1111/j.1540-8167.1998.tb01836.x es_ES
dc.description.references Bollmann, A., Kanuru, N., McTeague, K., Walter, P., DeLurgio, D., & Langberg, J. (1998). Frequency Analysis of Human Atrial Fibrillation Using the Surface Electrocardiogram and Its Response to Ibutilide. The American Journal of Cardiology, 81(12), 1439-1445. doi:10.1016/s0002-9149(98)00210-0 es_ES
dc.description.references Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x es_ES
dc.description.references BOLLMANN, A., HUSSER, D., STEINERT, R., STRIDH, M., SOERNMO, L., OLSSON, S. B., … KLEIN, H. U. (2003). Echocardiographic and Electrocardiographic Predictors for Atrial Fibrillation Recurrence Following Cardioversion. Journal of Cardiovascular Electrophysiology, 14(s10), S162-S165. doi:10.1046/j.1540.8167.90306.x es_ES
dc.description.references Lemola, K., Ting, M., Gupta, P., Anker, J. N., Chugh, A., Good, E., … Oral, H. (2006). Effects of Two Different Catheter Ablation Techniques on Spectral Characteristics of Atrial Fibrillation. Journal of the American College of Cardiology, 48(2), 340-348. doi:10.1016/j.jacc.2006.04.053 es_ES
dc.description.references Dibs, S. R., Ng, J., Arora, R., Passman, R. S., Kadish, A. H., & Goldberger, J. J. (2008). Spatiotemporal characterization of atrial activation in persistent human atrial fibrillation: Multisite electrogram analysis and surface electrocardiographic correlations—A pilot study. Heart Rhythm, 5(5), 686-693. doi:10.1016/j.hrthm.2008.01.027 es_ES
dc.description.references PETRUTIU, S., SAHAKIAN, A. V., FISHER, W., & SWIRYN, S. (2009). Manifestation of Left Atrial Events and Interatrial Frequency Gradients in the Surface Electrocardiogram During Atrial Fibrillation: Contributions from Posterior Leads. Journal of Cardiovascular Electrophysiology, 20(11), 1231-1236. doi:10.1111/j.1540-8167.2009.01523.x es_ES
dc.description.references Cuculich, P. S., Wang, Y., Lindsay, B. D., Faddis, M. N., Schuessler, R. B., Damiano, R. J., … Rudy, Y. (2010). Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns. Circulation, 122(14), 1364-1372. doi:10.1161/circulationaha.110.945709 es_ES
dc.description.references Berenfeld, O., Zaitsev, A. V., Mironov, S. F., Pertsov, A. M., & Jalife, J. (2002). Frequency-Dependent Breakdown of Wave Propagation Into Fibrillatory Conduction Across the Pectinate Muscle Network in the Isolated Sheep Right Atrium. Circulation Research, 90(11), 1173-1180. doi:10.1161/01.res.0000022854.95998.5c es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem