- -

Artificial satellites preliminary orbit determination by the modified high-order Gauss method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial satellites preliminary orbit determination by the modified high-order Gauss method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arroyo Martínez, Víctor es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Penkova Vassileva, María es_ES
dc.date.accessioned 2015-09-29T12:26:39Z
dc.date.available 2015-09-29T12:26:39Z
dc.date.issued 2012
dc.identifier.issn 0020-7160
dc.identifier.uri http://hdl.handle.net/10251/55276
dc.description.abstract In recent years, high-order methods have shown to be very useful in many practical applications, in which nonlinear systems arise. In this case, a classical method of positional astronomy have been modified in order to hold a nonlinear system in its establishments (that in the classical method is reduced to a single equation). At this point, high-order methods have been introduced in order to estimate the solutions of this system and, then, determine the orbit of the celestial body. We also have implemented a user friendly application, which will allow us to make a numerical and graphical comparison of the different methods with reference orbits, or user defined orbits. es_ES
dc.description.sponsorship The authors would like to thank the referees for their valuable comments and suggestions that have improved the content of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2010-18539. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis Ltd es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Orbit determination es_ES
dc.subject Gauss method es_ES
dc.subject Nonlinear systems es_ES
dc.subject Newton's method es_ES
dc.subject Order of convergence es_ES
dc.subject Efficiency index es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Artificial satellites preliminary orbit determination by the modified high-order Gauss method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2011.560266
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18539/ES/DISEÑO, ANALISIS Y OPTIMIZACION DE METODOS DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES. APLICACIONES A PROBLEMAS DE VALOR INICIAL Y FLUJO OPTICO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Arroyo Martínez, V.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2012). Artificial satellites preliminary orbit determination by the modified high-order Gauss method. International Journal of Computer Mathematics. 89(3):347-356. https://doi.org/10.1080/00207160.2011.560266 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00207160.2011.560266 es_ES
dc.description.upvformatpinicio 347 es_ES
dc.description.upvformatpfin 356 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 89 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 237513 es_ES
dc.identifier.eissn 1029-0265
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z es_ES
dc.description.references Danchick, R. (2008). Gauss meets Newton again: How to make Gauss orbit determination from two position vectors more efficient and robust with Newton–Raphson iterations. Applied Mathematics and Computation, 195(2), 364-375. doi:10.1016/j.amc.2007.03.053 es_ES
dc.description.references Escobal, P. R. 1975. “Methods of Orbit Determination”. Huntington, NY: Robert E. Krieger Publishing Company. es_ES
dc.description.references Gronchi, G. F. (2009). Multiple solutions in preliminary orbit determination from three observations. Celestial Mechanics and Dynamical Astronomy, 103(4), 301-326. doi:10.1007/s10569-009-9201-x es_ES
dc.description.references Gronchi, G. F., Dimare, L., & Milani, A. (2010). Orbit determination with the two-body integrals. Celestial Mechanics and Dynamical Astronomy, 107(3), 299-318. doi:10.1007/s10569-010-9271-9 es_ES
dc.description.references Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 es_ES
dc.description.references Traub, J. F. 1982. “Iterative Methods for the Solution of Equations”. New York: Chelsea Publishing Company. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem