Mostrar el registro sencillo del ítem
dc.contributor.author | Arroyo Martínez, Víctor | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Penkova Vassileva, María | es_ES |
dc.date.accessioned | 2015-09-29T12:26:39Z | |
dc.date.available | 2015-09-29T12:26:39Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0020-7160 | |
dc.identifier.uri | http://hdl.handle.net/10251/55276 | |
dc.description.abstract | In recent years, high-order methods have shown to be very useful in many practical applications, in which nonlinear systems arise. In this case, a classical method of positional astronomy have been modified in order to hold a nonlinear system in its establishments (that in the classical method is reduced to a single equation). At this point, high-order methods have been introduced in order to estimate the solutions of this system and, then, determine the orbit of the celestial body. We also have implemented a user friendly application, which will allow us to make a numerical and graphical comparison of the different methods with reference orbits, or user defined orbits. | es_ES |
dc.description.sponsorship | The authors would like to thank the referees for their valuable comments and suggestions that have improved the content of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2010-18539. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis Ltd | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Orbit determination | es_ES |
dc.subject | Gauss method | es_ES |
dc.subject | Nonlinear systems | es_ES |
dc.subject | Newton's method | es_ES |
dc.subject | Order of convergence | es_ES |
dc.subject | Efficiency index | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Artificial satellites preliminary orbit determination by the modified high-order Gauss method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2011.560266 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18539/ES/DISEÑO, ANALISIS Y OPTIMIZACION DE METODOS DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES. APLICACIONES A PROBLEMAS DE VALOR INICIAL Y FLUJO OPTICO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Arroyo Martínez, V.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2012). Artificial satellites preliminary orbit determination by the modified high-order Gauss method. International Journal of Computer Mathematics. 89(3):347-356. https://doi.org/10.1080/00207160.2011.560266 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00207160.2011.560266 | es_ES |
dc.description.upvformatpinicio | 347 | es_ES |
dc.description.upvformatpfin | 356 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 89 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 237513 | es_ES |
dc.identifier.eissn | 1029-0265 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z | es_ES |
dc.description.references | Danchick, R. (2008). Gauss meets Newton again: How to make Gauss orbit determination from two position vectors more efficient and robust with Newton–Raphson iterations. Applied Mathematics and Computation, 195(2), 364-375. doi:10.1016/j.amc.2007.03.053 | es_ES |
dc.description.references | Escobal, P. R. 1975. “Methods of Orbit Determination”. Huntington, NY: Robert E. Krieger Publishing Company. | es_ES |
dc.description.references | Gronchi, G. F. (2009). Multiple solutions in preliminary orbit determination from three observations. Celestial Mechanics and Dynamical Astronomy, 103(4), 301-326. doi:10.1007/s10569-009-9201-x | es_ES |
dc.description.references | Gronchi, G. F., Dimare, L., & Milani, A. (2010). Orbit determination with the two-body integrals. Celestial Mechanics and Dynamical Astronomy, 107(3), 299-318. doi:10.1007/s10569-010-9271-9 | es_ES |
dc.description.references | Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 | es_ES |
dc.description.references | Traub, J. F. 1982. “Iterative Methods for the Solution of Equations”. New York: Chelsea Publishing Company. | es_ES |