- -

Non-linear analysis of rheological effects in slender composite columns

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-linear analysis of rheological effects in slender composite columns

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fenollosa Forner, Ernesto Jesús es_ES
dc.contributor.author Cabrera Fausto, Ivan es_ES
dc.contributor.author Almerich Chulia, Ana Isabel es_ES
dc.date.accessioned 2015-10-05T08:22:57Z
dc.date.available 2015-10-05T08:22:57Z
dc.date.issued 2014-07-04
dc.identifier.issn 1662-7482
dc.identifier.uri http://hdl.handle.net/10251/55524
dc.description.abstract [EN] A thorough analysis of slender columns under axial force and bending moment requires second order effects assessment. Concrete s creep is one of the factors that increase lateral displacements of the bar in the long run. This phenomenon propitiates the instability and reduces its bearing capacity. This paper shows a procedure for assessing rheological effects based on Eurocode 2 method. This procedure will be added to structural analysis software which takes into consideration geometrical and mechanical non-linearity. As an example interaction diagrams for concrete-encased composite columns with different slenderness values are obtained. These diagrams will demonstrate that rheological effects have a greater influence as axial force eccentricity and slenderness values increase. es_ES
dc.language Inglés es_ES
dc.publisher Trans Tech Publications es_ES
dc.relation.ispartof Applied Mechanichs and Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Creep es_ES
dc.subject Shrinkage es_ES
dc.subject Composite es_ES
dc.subject Columns es_ES
dc.subject Buckling es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Non-linear analysis of rheological effects in slender composite columns es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4028/www.scientific.net/AMM.578-579.389
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Fenollosa Forner, EJ.; Cabrera Fausto, I.; Almerich Chulia, AI. (2014). Non-linear analysis of rheological effects in slender composite columns. Applied Mechanichs and Materials. 578-579:389-395. doi:10.4028/www.scientific.net/AMM.578-579.389 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.scientific.net/AMM.578-579.389 es_ES
dc.description.upvformatpinicio 389 es_ES
dc.description.upvformatpfin 395 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 578-579 es_ES
dc.relation.senia 265744 es_ES
dc.description.references Z. P. Bazant: Creep Stability and Buckling Strength of Concrete Columns. Magazine of Concrete Research. Vol. 20, nº 63. (1968), pp.85-94. es_ES
dc.description.references Z.P. Bazant: Phenomenological theories for creep of concrete based on rheological models. Acta Technica CSAV. Nº 1 (1966), pp.82-109. es_ES
dc.description.references Z. P. Bazant: Mathematical Modeling of Creep and Shrinkage of Concrete. Chapters 2 and 3. John Wiley and sons. New York (1988). es_ES
dc.description.references A. Kawano and R. F. Warner: Model Formulations for Numerical Creep Calculations for Concrete. Journal of Structural Engineering (1996), pp.284-290. es_ES
dc.description.references ANGLE. Structural Analysis Software for Finite Elements. Developed by A. Alonso. Department of Mechanics of the Continuous Medium and T. E. Universitat Politècnica de València. es_ES
dc.description.references W. Mc Guire, R. Gallagher and R. Ziemian. Matrix structural analysis. New York: John Wiley & Sons, Inc. (2000). es_ES
dc.description.references Asociación Española de Normalización y Certificación (AENOR) 1993. Eurocódigo 2: Proyecto de estructuras de hormigón. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR. es_ES
dc.description.references Asociación Española de Normalización y Certificación (AENOR) 1996. Eurocodigo 3: Proyecto de estructuras de acero. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR. es_ES
dc.description.references R. Duan, X. Huang and H. Zhang: Concrete Shrinkage and Creep Effect Prediction Model and the Influence Factors Analysis. Advanced Materials Research. Vols 756-759 (2013) p.2051-(2054). es_ES
dc.description.references K.S. Virdi and P.J. Dowling: The Ultimate Strength of Composite Columns in Biaxial Bending. In: Proceedings of the institution of civil engineers, Part 2; 55: (1973) pp.251-72. es_ES
dc.description.references J.Y.R. Yen: Quasi-Newton Method for Reinforced Concrete Column Analysis and Design. ASCE Journal Structural Engineering, 117(3) (1991), pp.657-66. es_ES
dc.description.references E. Fenollosa and A. Alonso: Assessment of Materials Nonlinearity in Framed Structures of Reinforced Concrete and Composites. 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures. (2013) pp.898-906. es_ES
dc.description.references E. Fenollosa and I. Cabrera: Analysis of Composite Section Columns Under Axial Compression and Biaxial Bending Moments. Structures and Architecture: Concepts, Applications and Challenges. Chapter 186. Taylor & Francis Group, London. (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem