Mostrar el registro sencillo del ítem
dc.contributor.author | Fenollosa Forner, Ernesto Jesús | es_ES |
dc.contributor.author | Cabrera Fausto, Ivan | es_ES |
dc.contributor.author | Almerich Chulia, Ana Isabel | es_ES |
dc.date.accessioned | 2015-10-05T08:22:57Z | |
dc.date.available | 2015-10-05T08:22:57Z | |
dc.date.issued | 2014-07-04 | |
dc.identifier.issn | 1662-7482 | |
dc.identifier.uri | http://hdl.handle.net/10251/55524 | |
dc.description.abstract | [EN] A thorough analysis of slender columns under axial force and bending moment requires second order effects assessment. Concrete s creep is one of the factors that increase lateral displacements of the bar in the long run. This phenomenon propitiates the instability and reduces its bearing capacity. This paper shows a procedure for assessing rheological effects based on Eurocode 2 method. This procedure will be added to structural analysis software which takes into consideration geometrical and mechanical non-linearity. As an example interaction diagrams for concrete-encased composite columns with different slenderness values are obtained. These diagrams will demonstrate that rheological effects have a greater influence as axial force eccentricity and slenderness values increase. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Trans Tech Publications | es_ES |
dc.relation.ispartof | Applied Mechanichs and Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Creep | es_ES |
dc.subject | Shrinkage | es_ES |
dc.subject | Composite | es_ES |
dc.subject | Columns | es_ES |
dc.subject | Buckling | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Non-linear analysis of rheological effects in slender composite columns | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4028/www.scientific.net/AMM.578-579.389 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Fenollosa Forner, EJ.; Cabrera Fausto, I.; Almerich Chulia, AI. (2014). Non-linear analysis of rheological effects in slender composite columns. Applied Mechanichs and Materials. 578-579:389-395. doi:10.4028/www.scientific.net/AMM.578-579.389 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.scientific.net/AMM.578-579.389 | es_ES |
dc.description.upvformatpinicio | 389 | es_ES |
dc.description.upvformatpfin | 395 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 578-579 | es_ES |
dc.relation.senia | 265744 | es_ES |
dc.description.references | Z. P. Bazant: Creep Stability and Buckling Strength of Concrete Columns. Magazine of Concrete Research. Vol. 20, nº 63. (1968), pp.85-94. | es_ES |
dc.description.references | Z.P. Bazant: Phenomenological theories for creep of concrete based on rheological models. Acta Technica CSAV. Nº 1 (1966), pp.82-109. | es_ES |
dc.description.references | Z. P. Bazant: Mathematical Modeling of Creep and Shrinkage of Concrete. Chapters 2 and 3. John Wiley and sons. New York (1988). | es_ES |
dc.description.references | A. Kawano and R. F. Warner: Model Formulations for Numerical Creep Calculations for Concrete. Journal of Structural Engineering (1996), pp.284-290. | es_ES |
dc.description.references | ANGLE. Structural Analysis Software for Finite Elements. Developed by A. Alonso. Department of Mechanics of the Continuous Medium and T. E. Universitat Politècnica de València. | es_ES |
dc.description.references | W. Mc Guire, R. Gallagher and R. Ziemian. Matrix structural analysis. New York: John Wiley & Sons, Inc. (2000). | es_ES |
dc.description.references | Asociación Española de Normalización y Certificación (AENOR) 1993. Eurocódigo 2: Proyecto de estructuras de hormigón. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR. | es_ES |
dc.description.references | Asociación Española de Normalización y Certificación (AENOR) 1996. Eurocodigo 3: Proyecto de estructuras de acero. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR. | es_ES |
dc.description.references | R. Duan, X. Huang and H. Zhang: Concrete Shrinkage and Creep Effect Prediction Model and the Influence Factors Analysis. Advanced Materials Research. Vols 756-759 (2013) p.2051-(2054). | es_ES |
dc.description.references | K.S. Virdi and P.J. Dowling: The Ultimate Strength of Composite Columns in Biaxial Bending. In: Proceedings of the institution of civil engineers, Part 2; 55: (1973) pp.251-72. | es_ES |
dc.description.references | J.Y.R. Yen: Quasi-Newton Method for Reinforced Concrete Column Analysis and Design. ASCE Journal Structural Engineering, 117(3) (1991), pp.657-66. | es_ES |
dc.description.references | E. Fenollosa and A. Alonso: Assessment of Materials Nonlinearity in Framed Structures of Reinforced Concrete and Composites. 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures. (2013) pp.898-906. | es_ES |
dc.description.references | E. Fenollosa and I. Cabrera: Analysis of Composite Section Columns Under Axial Compression and Biaxial Bending Moments. Structures and Architecture: Concepts, Applications and Challenges. Chapter 186. Taylor & Francis Group, London. (2013). | es_ES |