- -

Maximum a Posteriori Binary Mask Estimation for Underdetermined Source Separation Using Smoothed Posteriors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Maximum a Posteriori Binary Mask Estimation for Underdetermined Source Separation Using Smoothed Posteriors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cobos Serrano, Máximo es_ES
dc.contributor.author López Monfort, José Javier es_ES
dc.date.accessioned 2015-10-14T12:13:40Z
dc.date.available 2015-10-14T12:13:40Z
dc.date.issued 2012-09
dc.identifier.issn 1558-7916
dc.identifier.uri http://hdl.handle.net/10251/55961
dc.description.abstract Sound source separation has become a topic of intensive research in the last years. The research effort has been specially relevant for the underdetermined case, where a considerable number of sparse methods working in the time-frequency (T-F) domain have appeared. In this context, although binary masking seems to be a preferred choice for source demixing, the estimated masks differ substantially from the ideal ones. This paper proposes a maximum a posteriori (MAP) framework for binary mask estimation. To this end, class-conditional source probabilities according to the observed mixing parameters are modeled via ratios of dependent Cauchy distributions while source priors are iteratively calculated from the observed histograms. Moreover, spatially smoothed posteriors in the T-F domain are proposed to avoid noisy estimates, showing that the estimated masks are closer to the ideal ones in terms of objective performance measures. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation under project TEC2009-14414-C03-01. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Jingdong Chen. en_EN
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) es_ES
dc.relation.ispartof IEEE Transactions on Audio, Speech and Language Processing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Direction of arrival estimation es_ES
dc.subject Estimation es_ES
dc.subject Histograms es_ES
dc.subject Indexes es_ES
dc.subject Speech es_ES
dc.subject Speech processing es_ES
dc.subject Time frequency analysis es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Maximum a Posteriori Binary Mask Estimation for Underdetermined Source Separation Using Smoothed Posteriors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TASL.2012.2195654
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-14414-C03-01/ES/Procesado De Sonido Para Entornos Emergentes De Comunicacion/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Cobos Serrano, M.; López Monfort, JJ. (2012). Maximum a Posteriori Binary Mask Estimation for Underdetermined Source Separation Using Smoothed Posteriors. IEEE Transactions on Audio, Speech and Language Processing. 20(7):2059-2064. doi:10.1109/TASL.2012.2195654 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1109/TASL.2012.2195654 es_ES
dc.description.upvformatpinicio 2059 es_ES
dc.description.upvformatpfin 2064 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 241196 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem