- -

Three-step iterative methods with optimal eighth-order convergence

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Three-step iterative methods with optimal eighth-order convergence

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Penkova Vassileva, María es_ES
dc.date.accessioned 2015-10-15T09:32:09Z
dc.date.available 2015-10-15T09:32:09Z
dc.date.issued 2011-03-15
dc.identifier.issn 0377-0427
dc.identifier.uri http://hdl.handle.net/10251/56019
dc.description.abstract In this paper, based on Ostrowski's method, a new family of eighth-order methods for solving nonlinear equations is derived. In terms of computational cost, each iteration of these methods requires three evaluations of the function and one evaluation of its first derivative, so that their efficiency indices are 1.682, which is optimal according to Kung and Traub's conjecture. Numerical comparisons are made to show the performance of the new family. © 2011 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This research was supported by Ministerio de Ciencia y Tecnologia MTM2010-18539. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Convergence order es_ES
dc.subject Efficiency index es_ES
dc.subject Iterative methods es_ES
dc.subject Nonlinear equations es_ES
dc.subject Optimal order es_ES
dc.subject Ostrowski's method es_ES
dc.subject Computational costs es_ES
dc.subject First derivative es_ES
dc.subject Numerical comparison es_ES
dc.subject Optimization es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Three-step iterative methods with optimal eighth-order convergence es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2011.01.004
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18539/ES/DISEÑO, ANALISIS Y OPTIMIZACION DE METODOS DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES. APLICACIONES A PROBLEMAS DE VALOR INICIAL Y FLUJO OPTICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics. 235(10):3189-3194. https://doi.org/10.1016/j.cam.2011.01.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.cam.2011.01.004 es_ES
dc.description.upvformatpinicio 3189 es_ES
dc.description.upvformatpfin 3194 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 235 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 215657 es_ES
dc.identifier.eissn 1879-1778
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem