- -

Drawing dynamical and parameters planes of iterative families and methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Drawing dynamical and parameters planes of iterative families and methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chicharro López, Francisco Israel es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2015-10-19T11:16:09Z
dc.date.available 2015-10-19T11:16:09Z
dc.date.issued 2013
dc.identifier.issn 2356-6140
dc.identifier.uri http://hdl.handle.net/10251/56200
dc.description.abstract The complex dynamical analysis of the parametric fourth-order Kim s iterative family is made on quadratic polynomials, showing the MATLAB codes generated to draw the fractal images necessary to complete the study. The parameter spaces associated with the free critical points have been analyzed, showing the stable (and unstable) regions where the selection of the parameter will provide us the excellent schemes (or dreadful ones). es_ES
dc.description.sponsorship The authors thank the anonymous referees for their valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof The Scientific World Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Complex dynamics es_ES
dc.subject Parameters plane es_ES
dc.subject Dynamical plane es_ES
dc.subject Kim's iterative family es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Drawing dynamical and parameters planes of iterative families and methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/780153
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Chicharro López, FI.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2013). Drawing dynamical and parameters planes of iterative families and methods. The Scientific World Journal. 2013. https://doi.org/10.1155/2013/780153 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/780153 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 252678 es_ES
dc.identifier.eissn 1537-744X
dc.identifier.pmid 24376386 en_EN
dc.identifier.pmcid PMC3859210 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Douady, A., & Hubbard, J. H. (1985). On the dynamics of polynomial-like mappings. Annales scientifiques de l’École normale supérieure, 18(2), 287-343. doi:10.24033/asens.1491 es_ES
dc.description.references Curry, J. H., Garnett, L., & Sullivan, D. (1983). On the iteration of a rational function: Computer experiments with Newton’s method. Communications in Mathematical Physics, 91(2), 267-277. doi:10.1007/bf01211162 es_ES
dc.description.references Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310 es_ES
dc.description.references Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017 es_ES
dc.description.references Honorato, G., Plaza, S., & Romero, N. (2011). Dynamics of a higher-order family of iterative methods. Journal of Complexity, 27(2), 221-229. doi:10.1016/j.jco.2010.10.005 es_ES
dc.description.references Chicharro, F., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2013). Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 219(12), 7023-7035. doi:10.1016/j.amc.2012.12.075 es_ES
dc.description.references Artidiello, S., Chicharro, F., Cordero, A., & Torregrosa, J. R. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics, 90(10), 2049-2060. doi:10.1080/00207160.2012.748900 es_ES
dc.description.references Scott, M., Neta, B., & Chun, C. (2011). Basin attractors for various methods. Applied Mathematics and Computation, 218(6), 2584-2599. doi:10.1016/j.amc.2011.07.076 es_ES
dc.description.references Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 es_ES
dc.description.references Neta, B., Scott, M., & Chun, C. (2012). Basin attractors for various methods for multiple roots. Applied Mathematics and Computation, 218(9), 5043-5066. doi:10.1016/j.amc.2011.10.071 es_ES
dc.description.references Cordero, A., García-Maimó, J., Torregrosa, J. R., Vassileva, M. P., & Vindel, P. (2013). Chaos in King’s iterative family. Applied Mathematics Letters, 26(8), 842-848. doi:10.1016/j.aml.2013.03.012 es_ES
dc.description.references Devaney, R. L. (1999). The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence. The American Mathematical Monthly, 106(4), 289. doi:10.2307/2589552 es_ES
dc.description.references Ik Kim, Y. (2012). A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. International Journal of Computer Mathematics, 89(8), 1051-1059. doi:10.1080/00207160.2012.673597 es_ES
dc.description.references Cordero, A., Torregrosa, J. R., & Vindel, P. (2013). Dynamics of a family of Chebyshev–Halley type methods. Applied Mathematics and Computation, 219(16), 8568-8583. doi:10.1016/j.amc.2013.02.042 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem