- -

Water Distribution System Computer-Aided Design by Agent Swarm Optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water Distribution System Computer-Aided Design by Agent Swarm Optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Montalvo Arango, Idel es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Pérez García, Rafael es_ES
dc.contributor.author Herrera Fernández, Antonio Manuel es_ES
dc.date.accessioned 2015-10-20T06:05:01Z
dc.date.available 2015-10-20T06:05:01Z
dc.date.issued 2014-07
dc.identifier.issn 1093-9687
dc.identifier.uri http://hdl.handle.net/10251/56241
dc.description.abstract Optimal design of water distribution systems (WDS), including the sizing of components, quality control, reliability, renewal and rehabilitation strategies, etc., is a complex problem in water engineering that requires robust methods of optimization. Classical methods of optimization are not well suited for analyzing highly-dimensional, multimodal, non-linear problems, especially given inaccurate, noisy, discrete and complex data. Agent Swarm Optimization (ASO) is a novel paradigm that exploits swarm intelligence and borrows some ideas from multiagent based systems. It is aimed at supporting decisionmaking processes by solving multi-objective optimization problems. ASO offers robustness through a framework where various population-based algorithms co-exist. The ASO framework is described and used to solve the optimal design of WDS. The approach allows engineers to work in parallel with the computational algorithms to force the recruitment of new searching elements, thus contributing to the solution process with expert-based proposals. es_ES
dc.description.sponsorship This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Spanish Ministry of Education and Science, and ACOMP/2010/146 of the education department of the Generalitat Valenciana. The use of English was revised by John Rawlins. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof Computer-Aided Civil and Infrastructure Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Water distribution systems (WDS) es_ES
dc.subject Agent Swarm Optimization (ASO) es_ES
dc.subject Computational algorithms es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Water Distribution System Computer-Aided Design by Agent Swarm Optimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/mice.12062
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-11591/ES/Aplicacion De Herramientas Del Analisis Inteligente De Datos En La Gestion Tecnica De Sistemas De Distribucion Y Evacuacion De Aguas/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2010%2F146/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Montalvo Arango, I.; Izquierdo Sebastián, J.; Pérez García, R.; Herrera Fernández, AM. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering. 29(6):433-448. https://doi.org/10.1111/mice.12062 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/mice.12062 es_ES
dc.description.upvformatpinicio 433 es_ES
dc.description.upvformatpfin 448 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 278182 es_ES
dc.identifier.eissn 1467-8667
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Adeli, H., & Kumar, S. (1995). Distributed Genetic Algorithm for Structural Optimization. Journal of Aerospace Engineering, 8(3), 156-163. doi:10.1061/(asce)0893-1321(1995)8:3(156) es_ES
dc.description.references Afshar, M. H., Akbari, M., & Mariño, M. A. (2005). Simultaneous Layout and Size Optimization of Water Distribution Networks: Engineering Approach. Journal of Infrastructure Systems, 11(4), 221-230. doi:10.1061/(asce)1076-0342(2005)11:4(221) es_ES
dc.description.references Amini, F., Hazaveh, N. K., & Rad, A. A. (2013). Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers. Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-557. doi:10.1111/mice.12017 es_ES
dc.description.references Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010 es_ES
dc.description.references Badawy, R., Yassine, A., Heßler, A., Hirsch, B., & Albayrak, S. (2013). A novel multi-agent system utilizing quantum-inspired evolution for demand side management in the future smart grid. Integrated Computer-Aided Engineering, 20(2), 127-141. doi:10.3233/ica-130423 es_ES
dc.description.references Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51. doi:10.1007/bf00940812 es_ES
dc.description.references Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79) es_ES
dc.description.references Díaz , J. L. Herrera , M. Izquierdo , J. Montalvo , I. Pérez-García , R. 2008 A particle swarm optimization derivative applied to cluster analysis es_ES
dc.description.references Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436 es_ES
dc.description.references Dridi, L., Parizeau, M., Mailhot, A., & Villeneuve, J.-P. (2008). Using Evolutionary Optimization Techniques for Scheduling Water Pipe Renewal Considering a Short Planning Horizon. Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-635. doi:10.1111/j.1467-8667.2008.00564.x es_ES
dc.description.references Duan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. doi:10.1007/bf00939380 es_ES
dc.description.references Duchesne, S., Beardsell, G., Villeneuve, J.-P., Toumbou, B., & Bouchard, K. (2012). A Survival Analysis Model for Sewer Pipe Structural Deterioration. Computer-Aided Civil and Infrastructure Engineering, 28(2), 146-160. doi:10.1111/j.1467-8667.2012.00773.x es_ES
dc.description.references Dupont, G., Adam, S., Lecourtier, Y., & Grilheres, B. (2008). Multi objective particle swarm optimization using enhanced dominance and guide selection. International Journal of Computational Intelligence Research, 4(2). doi:10.5019/j.ijcir.2008.134 es_ES
dc.description.references Fougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434 es_ES
dc.description.references Fuggini, C., Chatzi, E., & Zangani, D. (2012). Combining Genetic Algorithms with a Meso-Scale Approach for System Identification of a Smart Polymeric Textile. Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-245. doi:10.1111/j.1467-8667.2012.00789.x es_ES
dc.description.references Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201 es_ES
dc.description.references Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626) es_ES
dc.description.references Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211) es_ES
dc.description.references Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287) es_ES
dc.description.references Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447) es_ES
dc.description.references Gutierrez-Garcia, J. O., & Sim, K. M. (2012). Agent-based cloud workflow execution. Integrated Computer-Aided Engineering, 19(1), 39-56. doi:10.3233/ica-2012-0387 es_ES
dc.description.references Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026 es_ES
dc.description.references Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P., & Yu, W.-D. (2012). Neuro-Fuzzy Cost Estimation Model Enhanced by Fast Messy Genetic Algorithms for Semiconductor Hookup Construction. Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-781. doi:10.1111/j.1467-8667.2012.00786.x es_ES
dc.description.references Izquierdo , J. Minciardi , R. Montalvo , I. Robba , M. Tavera , M. 2008a Particle swarm optimization for the biomass supply chain strategic planning 1272 80 es_ES
dc.description.references Izquierdo , J. Montalvo , I. Herrera , M. Pérez-García , R. 2012 A general purpose non-linear optimization framework based on particle swarm optimization es_ES
dc.description.references Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007 es_ES
dc.description.references Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008 es_ES
dc.description.references Izquierdo , J. Montalvo , I. Pérez , R. Tavera , M. 2008b Optimization in water systems: a PSO approach 239 46 es_ES
dc.description.references Jafarkhani, R., & Masri, S. F. (2010). Finite Element Model Updating Using Evolutionary Strategy for Damage Detection. Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-224. doi:10.1111/j.1467-8667.2010.00687.x es_ES
dc.description.references Janson, S., Merkle, D., & Middendorf, M. (2008). Molecular docking with multi-objective Particle Swarm Optimization. Applied Soft Computing, 8(1), 666-675. doi:10.1016/j.asoc.2007.05.005 es_ES
dc.description.references Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6 es_ES
dc.description.references Keedwell, E., & Khu, S.-T. (2006). Novel Cellular Automata Approach to Optimal Water Distribution Network Design. Journal of Computing in Civil Engineering, 20(1), 49-56. doi:10.1061/(asce)0887-3801(2006)20:1(49) es_ES
dc.description.references Kennedy , J. Eberhart , R. C. 1995 Particle swarm optimization 1942 48 es_ES
dc.description.references Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10) es_ES
dc.description.references KIM, H., & ADELI, H. (2001). DISCRETE COST OPTIMIZATION OF COMPOSITE FLOORS USING A FLOATING-POINT GENETIC ALGORITHM. Engineering Optimization, 33(4), 485-501. doi:10.1080/03052150108940930 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15) es_ES
dc.description.references Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2 es_ES
dc.description.references Montalvo Arango, I. (s. f.). Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization. doi:10.4995/thesis/10251/14858 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017 es_ES
dc.description.references Moscato , P. 1989 On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms es_ES
dc.description.references Nejat, A., & Damnjanovic, I. (2012). Agent-Based Modeling of Behavioral Housing Recovery Following Disasters. Computer-Aided Civil and Infrastructure Engineering, 27(10), 748-763. doi:10.1111/j.1467-8667.2012.00787.x es_ES
dc.description.references Park, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83) es_ES
dc.description.references Paya, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2008). Multiobjective Optimization of Concrete Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596-610. doi:10.1111/j.1467-8667.2008.00561.x es_ES
dc.description.references Pinto, T., Praça, I., Vale, Z., Morais, H., & Sousa, T. M. (2013). Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. Integrated Computer-Aided Engineering, 20(4), 335-346. doi:10.3233/ica-130438 es_ES
dc.description.references Putha, R., Quadrifoglio, L., & Zechman, E. (2011). Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions. Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. doi:10.1111/j.1467-8667.2010.00715.x es_ES
dc.description.references Raich, A. M., & Liszkai, T. R. (2011). Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification. Computer-Aided Civil and Infrastructure Engineering, 27(2), 95-117. doi:10.1111/j.1467-8667.2011.00726.x es_ES
dc.description.references Rodríguez-Seda, E. J., Stipanović, D. M., & Spong, M. W. (2012). Teleoperation of multi-agent systems with nonuniform control input delays. Integrated Computer-Aided Engineering, 19(2), 125-136. doi:10.3233/ica-2012-0396 es_ES
dc.description.references Saldarriaga , J. G. Bernal , A. Ochoa , S. 2008 Optimized design of water distribution network enlargements using resilience and dissipated power concepts 298 312 es_ES
dc.description.references Sarma, K. C., & Adeli, H. (2000). Fuzzy Genetic Algorithm for Optimization of Steel Structures. Journal of Structural Engineering, 126(5), 596-604. doi:10.1061/(asce)0733-9445(2000)126:5(596) es_ES
dc.description.references Sgambi, L., Gkoumas, K., & Bontempi, F. (2012). Genetic Algorithms for the Dependability Assurance in the Design of a Long-Span Suspension Bridge. Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-675. doi:10.1111/j.1467-8667.2012.00780.x es_ES
dc.description.references Shafahi, Y., & Bagherian, M. (2012). A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem. Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67. doi:10.1111/j.1467-8667.2012.00769.x es_ES
dc.description.references Tanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206) es_ES
dc.description.references Tao, H., Zain, J. M., Ahmed, M. M., Abdalla, A. N., & Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integrated Computer-Aided Engineering, 19(1), 81-91. doi:10.3233/ica-2012-0392 es_ES
dc.description.references Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2 es_ES
dc.description.references Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467) es_ES
dc.description.references Vitins, B. J., & Axhausen, K. W. (2009). Optimization of Large Transport Networks Using the Ant Colony Heuristic. Computer-Aided Civil and Infrastructure Engineering, 24(1), 1-14. doi:10.1111/j.1467-8667.2008.00569.x es_ES
dc.description.references Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8). doi:10.1029/2002wr001746 es_ES
dc.description.references Vrugt, J. A., Ó Nualláin, B., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32(8), 1139-1155. doi:10.1016/j.cageo.2005.10.015 es_ES
dc.description.references Vrugt , J. A. Robinson , B. A. 2007 Improved evolutionary search from genetically adaptive multi-search method 104 3 708 11 es_ES
dc.description.references Wu , Z. Y. Wang , R. H. Walski , T. M. Yang , S. Y. Bowdler , D. Baggett , C. C. 2006 Efficient pressure dependent demand model for large water distribution system analysis es_ES
dc.description.references Xie, C., & Waller, S. T. (2011). Optimal Routing with Multiple Objectives: Efficient Algorithm and Application to the Hazardous Materials Transportation Problem. Computer-Aided Civil and Infrastructure Engineering, 27(2), 77-94. doi:10.1111/j.1467-8667.2011.00720.x es_ES
dc.description.references Xu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352) es_ES
dc.description.references Zeferino, J. A., Antunes, A. P., & Cunha, M. C. (2009). An Efficient Simulated Annealing Algorithm for Regional Wastewater System Planning. Computer-Aided Civil and Infrastructure Engineering, 24(5), 359-370. doi:10.1111/j.1467-8667.2009.00594.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem