- -

Preparation of layered double hydroxide/chlorophyll a hybrid nano-antennae: a key step

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation of layered double hydroxide/chlorophyll a hybrid nano-antennae: a key step

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sommer Marquez, Alicia E. es_ES
dc.contributor.author Lerner, Dan A. es_ES
dc.contributor.author Fetter, Geolar es_ES
dc.contributor.author Bosch, Pedro es_ES
dc.contributor.author Tichit, Didier es_ES
dc.contributor.author Palomares Gimeno, Antonio Eduardo es_ES
dc.date.accessioned 2015-10-20T07:43:23Z
dc.date.available 2015-10-20T07:43:23Z
dc.date.issued 2014
dc.identifier.issn 1477-9226
dc.identifier.uri http://hdl.handle.net/10251/56243
dc.description.abstract In the first step to obtain an efficient nano-antenna in a bottom-up approach, new hybrid materials were synthesized using a set of layered double hydroxides (LDHs) with basic properties and pure chlorophyll a (Chl a). The stability of the adsorbed monolayer of Chl a was shown to be dependent on the nature and the ratio of the different metal ions present in the LDHs tested. The hybrid materials turned out to be adequate for stabilizing Chl a on Mg/Al LDHs for more than a month under ambient conditions while a limited catalytic decomposition was observed for the Ni/Al LDHs leading to the formation of pheophytin. These changes were followed by namely XRD, DR-UV-vis and fluorescence spectroscopies of the hybrid antennae and of the solutions obtained from their lixiviation with acetone or diethylether. On Mg/Al hydrotalcites the stability of the adsorbed Chl a was equivalent for values of the metal atom ratio ranging from 2 to 4. The latter hybrids should constitute a good basis to form efficient nanoscale light harvesting units following intercalation of selected dyes. This work describes an efficient preparation of Chl a that allows scale-up as well as the obtention of a stable Chl a monolayer on the surface of various LDHs. es_ES
dc.description.sponsorship Thanks are due to Adriana Tejeda for the technical work in X-ray diffraction. The financial support from CONACYT (project 154060) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chlorophyll-A; Double Hydroxides es_ES
dc.subject Microwave Irradiation es_ES
dc.subject Basic Properties es_ES
dc.subject Anionic Clays es_ES
dc.subject Mixed Oxides es_ES
dc.subject Light es_ES
dc.subject Adsorption es_ES
dc.subject Photoreduction es_ES
dc.subject Hydrotalcites es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Preparation of layered double hydroxide/chlorophyll a hybrid nano-antennae: a key step es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4dt00113c
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//154060/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Sommer Marquez, AE.; Lerner, DA.; Fetter, G.; Bosch, P.; Tichit, D.; Palomares Gimeno, AE. (2014). Preparation of layered double hydroxide/chlorophyll a hybrid nano-antennae: a key step. Dalton Transactions. 43(27):10521-10528. https://doi.org/10.1039/c4dt00113c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4dt00113c es_ES
dc.description.upvformatpinicio 10521 es_ES
dc.description.upvformatpfin 10528 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 27 es_ES
dc.relation.senia 281955 es_ES
dc.identifier.eissn 1477-9234
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references R. E. Blankensip , Molecular Mechanisms of Photosynthesis , Blackwell Science Ltd , London , 2002 es_ES
dc.description.references D. Simpson and J.Knoetzel , in Oxygenic Photosynthesis: the light reactions , ed. D. O. a. C. Yocum , Kluwer , 1996 , pp. 493–506 es_ES
dc.description.references A. F. Collings and C.Critchley , Artificial Photosynthesis , Wiley-VCH , Weinheim , 2005 es_ES
dc.description.references Fleming, C. N., Maxwell, K. A., DeSimone, J. M., Meyer, T. J., & Papanikolas, J. M. (2001). Ultrafast Excited-State Energy Migration Dynamics in an Efficient Light-Harvesting Antenna Polymer Based on Ru(II) and Os(II) Polypyridyl Complexes. Journal of the American Chemical Society, 123(42), 10336-10347. doi:10.1021/ja016304i es_ES
dc.description.references Lerner, D. ., Ricchiero, F., & Giannotti, C. (1979). Model light trap based on transition metal complexes at a liquid—liquid interface. Journal of Colloid and Interface Science, 68(3), 596-598. doi:10.1016/0021-9797(79)90316-3 es_ES
dc.description.references Lerner, D. A., Ricchiero, F., & Giannotti, C. (1980). Quantum yields of photolysis of amphipathic alkylcobaloximes in mixed micelles. A cooperative effect? The Journal of Physical Chemistry, 84(23), 3007-3011. doi:10.1021/j100460a007 es_ES
dc.description.references Koo, H.-J., Chang, S. T., Slocik, J. M., Naik, R. R., & Velev, O. D. (2011). Aqueous soft matter based photovoltaic devices. J. Mater. Chem., 21(1), 72-79. doi:10.1039/c0jm01820a es_ES
dc.description.references Calzaferri, G., & Lutkouskaya, K. (2008). Mimicking the antenna system of green plants. Photochemical & Photobiological Sciences, 7(8), 879. doi:10.1039/b804682b es_ES
dc.description.references Demel, J., & Lang, K. (2012). Layered Hydroxide-Porphyrin Hybrid Materials: Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry, 2012(32), 5154-5164. doi:10.1002/ejic.201200400 es_ES
dc.description.references Ogawa, M., Sohmiya, M., & Watase, Y. (2011). Stabilization of photosensitizing dyes by complexation with clay. Chemical Communications, 47(30), 8602. doi:10.1039/c1cc12392k es_ES
dc.description.references Karlsson, S., Boixel, J., Pellegrin, Y., Blart, E., Becker, H.-C., Odobel, F., & Hammarström, L. (2012). Accumulative electron transfer: Multiple charge separation in artificial photosynthesis. Faraday Discuss., 155, 233-252. doi:10.1039/c1fd00089f es_ES
dc.description.references Rao, K. V., Datta, K. K. R., Eswaramoorthy, M., & George, S. J. (2012). Light-Harvesting Hybrid Assemblies. Chemistry - A European Journal, 18(8), 2184-2194. doi:10.1002/chem.201103601 es_ES
dc.description.references Watanabe, T., Hongu, A., Honda, K., Nakazato, M., Konno, M., & Saitoh, S. (1984). Preparation of chlorophylls and pheophytins by isocratic liquid chromatography. Analytical Chemistry, 56(2), 251-256. doi:10.1021/ac00266a030 es_ES
dc.description.references Kodera, Y., Kageyama, H., Sekine, H., & Inada, Y. (1992). Photo-stable chlorophylls conjugated with montmorillonite. Biotechnology Letters, 14(2), 119-122. doi:10.1007/bf01026237 es_ES
dc.description.references Mokaya, R., Jones, W., Davies, M. E., & Whittle, M. E. (1994). The Mechanism of Chlorophyll Adsorption on Acid-Activated Clays. Journal of Solid State Chemistry, 111(1), 157-163. doi:10.1006/jssc.1994.1212 es_ES
dc.description.references Ishii, A. (1995). Photostabilization of chlorophyll a adsorbed onto smectite. Dyes and Pigments, 28(1), 77-82. doi:10.1016/0143-7208(95)00005-z es_ES
dc.description.references Itoh, T., Ishii, A., Kodera, Y., Matsushima, A., Hiroto, M., Nishimura, H., … Inada, Y. (1998). Photostable ChlorophyllaConjugated with Poly(vinylpyrrolidone)−Smectite Catalyzes Photoreduction and Hydrogen Gas Evolution by Visible Light. Bioconjugate Chemistry, 9(3), 409-412. doi:10.1021/bc9701656 es_ES
dc.description.references Itoh, T., Yano, K., Inada, Y., & Fukushima, Y. (2002). Photostabilized Chlorophyllain Mesoporous Silica:  Adsorption Properties and Photoreduction Activity of Chlorophylla. Journal of the American Chemical Society, 124(45), 13437-13441. doi:10.1021/ja0203059 es_ES
dc.description.references Noji, T., Kamidaki, C., Kawakami, K., Shen, J.-R., Kajino, T., Fukushima, Y., … Itoh, S. (2011). Photosynthetic Oxygen Evolution in Mesoporous Silica Material: Adsorption of Photosystem II Reaction Center Complex into 23 nm Nanopores in SBA. Langmuir, 27(2), 705-713. doi:10.1021/la1032916 es_ES
dc.description.references Sampieri, A., Fetter, G., Pfeiffer, H., & Bosch, P. (2007). Carbonate phobic (Zn,Mn)-Al hydrotalcite-like compounds. Solid State Sciences, 9(5), 394-403. doi:10.1016/j.solidstatesciences.2007.03.014 es_ES
dc.description.references Tichit, D., Rolland, A., Prinetto, F., Fetter, G., de Jesus Martinez-Ortiz, M., Valenzuela, M. A., & Bosch, P. (2002). Comparison of the structural and acid–base properties of Ga- and Al-containing layered double hydroxides obtained by microwave irradiation and conventional ageing of synthesis gels. J. Mater. Chem., 12(12), 3832-3838. doi:10.1039/b203376n es_ES
dc.description.references Alejandre, A., Medina, F., Salagre, P., Correig, X., & Sueiras, J. E. (1999). Preparation and Study of Cu−Al Mixed Oxides via Hydrotalcite-like Precursors. Chemistry of Materials, 11(4), 939-948. doi:10.1021/cm980500f es_ES
dc.description.references Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173-301. doi:10.1016/0920-5861(91)80068-k es_ES
dc.description.references Rives, V., & Kannan, S. (2000). Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+. Journal of Materials Chemistry, 10(2), 489-495. doi:10.1039/a908534c es_ES
dc.description.references Sommer, A., Romero, A., Fetter, G., Palomares, E., & Bosch, P. (2013). Exploring and tuning the anchorage of chlorophyllin molecules on anionic clays. Catalysis Today, 212, 186-193. doi:10.1016/j.cattod.2013.03.014 es_ES
dc.description.references Nam, Y. S., Kim, J. M., Choi, J.-W., & Lee, W. H. (2004). Optimal deposition condition of chlorophyll a Langmuir–Blodgett film. Materials Science and Engineering: C, 24(1-2), 35-38. doi:10.1016/j.msec.2003.09.045 es_ES
dc.description.references Chapados, C., & M. Leblanc, R. (1983). Aggregation of chlorophylls in monolayers. Biophysical Chemistry, 17(3), 211-244. doi:10.1016/0301-4622(83)87006-9 es_ES
dc.description.references He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (s. f.). Preparation of Layered Double Hydroxides. Structure and Bonding, 89-119. doi:10.1007/430_006 es_ES
dc.description.references Bergadà, O., Salagre, P., Cesteros, Y., Medina, F., & Sueiras, J. E. (2007). Adsorption of Carbon Dioxide in Several Aged Hydrotalcites and Calcined Hydrotalcites: Influence of Microwave Irradiation during the Ageing Step on Their Basic Properties. Adsorption Science & Technology, 25(3-4), 143-154. doi:10.1260/026361707782398191 es_ES
dc.description.references Benito, P., Labajos, F. M., & Rives, V. (2009). Microwaves and layered double hydroxides: A smooth understanding. Pure and Applied Chemistry, 81(8), 1459-1471. doi:10.1351/pac-con-08-07-01 es_ES
dc.description.references G. Fetter and P.Bosch , in Pillared Clays and Related Catalysts , ed. A. Gil , S. A. Korili , R. Trujillano and M. A. Vicente , Springer , New York , 2010 , pp. 1–21 es_ES
dc.description.references Wong-Ng, W., McMurdie, H. F., Hubbard, C. R., & Mighell, A. D. (2001). JCPDS-ICDD Research Associateship (cooperative program with NBS/NIST). Journal of Research of the National Institute of Standards and Technology, 106(6), 1013. doi:10.6028/jres.106.052 es_ES
dc.description.references F. Rouquerol , J.Rouquerol and K.Sing , Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , Academic Press , San Diego , 1999 es_ES
dc.description.references S. Lowell , J. E.Shields , M. A.Thomas and M.Thommes , Characterization of porous solids and powders: surface area, pore size and density , Kluwer Academic Publishers , Dordrecht , 2004 es_ES
dc.description.references Layered Double Hydroxides: Present and Future , ed. V. Rives , Nova Science Publishers, Inc. , 2001 es_ES
dc.description.references Valente, J. S., Figueras, F., Gravelle, M., Kumbhar, P., Lopez, J., & Besse, J.-P. (2000). Basic Properties of the Mixed Oxides Obtained by Thermal Decomposition of Hydrotalcites Containing Different Metallic Compositions. Journal of Catalysis, 189(2), 370-381. doi:10.1006/jcat.1999.2706 es_ES
dc.description.references An-Erl King, V., Liu, C.-F., & Liu, Y.-J. (2001). Chlorophyll stability in spinach dehydrated by freeze-drying and controlled low-temperature vacuum dehydration. Food Research International, 34(2-3), 167-175. doi:10.1016/s0963-9969(00)00148-4 es_ES
dc.description.references Introduction to marine phytoplankton and their pigments signatures , ed. S. W. Jeffrey and M. Vesk , UNESCO Publishing , Paris , 1997 es_ES
dc.description.references Heithiert, H., Ballschmiter, K., & Mohwald, H. (1983). LIQUID-CRYSTALLINE PHASE TRANSITION OF MONOMOLECULAR LAYERS OF CHLOROPHYLL a. Photochemistry and Photobiology, 37(2), 201-205. doi:10.1111/j.1751-1097.1983.tb04459.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem