- -

Transmission, reflection and absorption in Sonic and Phononic Crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transmission, reflection and absorption in Sonic and Phononic Crystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Picó Vila, Rubén es_ES
dc.contributor.advisor Sánchez Morcillo, Víctor José es_ES
dc.contributor.author Cebrecos Ruiz, Alejandro es_ES
dc.date.accessioned 2015-10-26T07:26:04Z
dc.date.available 2015-10-26T07:26:04Z
dc.date.created 2015-10-06 es_ES
dc.date.issued 2015-10-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/56463
dc.description Tesis por compendio es_ES
dc.description.abstract [EN] Phononic crystals are artificial materials formed by a periodic arrangement of inclusions embedded into a host medium, where each of them can be solid or fluid. By controlling the geometry and the impedance contrast of its constituent materials, one can control the dispersive properties of waves, giving rise to a huge variety of interesting and fundamental phenomena in the context of wave propagation. When a propagating wave encounters a medium with different physical properties it can be transmitted and reflected in lossless media, but also absorbed if dissipation is taken into account. These fundamental phenomena have been classically explained in the context of homogeneous media, but it has been a subject of increasing interest in the context of periodic structures in recent years as well. This thesis is devoted to the study of different effects found in sonic and phononic crystals associated with transmission, reflection and absorption of waves, as well as the development of a technique for the characterization of its dispersive properties, described by the band structure. We start discussing the control of wave propagation in transmission in conservative systems. Specifically, our interest is to show how sonic crystals can modify the spatial dispersion of propagating waves leading to control the diffractive broadening of sound beams. Making use of the spatial dispersion curves extracted from the analysis of the band structure, we first predict zero and negative diffraction of waves at frequencies close to the band-edge, resulting in collimation and focusing of sound beams in and behind a 3D sonic crystal, and later demonstrate it through experimental measurements. The focusing efficiency of a 3D sonic crystal is limited due to the strong scattering inside the crystal, characteristic of the diffraction regime. To overcome this limitation we consider axisymmetric structures working in the long wavelength regime, as a gradient index lens. In this regime, the scattering is strongly reduced and, in an axisymmetric configuration, the symmetry matching with acoustic sources radiating sound beams increase its efficiency dramatically. Moreover, the homogenization theory can be used to model the structure as an effective medium with effective physical properties, allowing the study of the wave front profile in terms of refraction. We will show the model, design and characterization of an efficient focusing device based on these concepts. Consider now a periodic structure in which one of the parameters of the lattice, such as the lattice constant or the filling fraction, gradually changes along the propagation direction. Chirped crystals represent this concept and are used here to demonstrate a novel mechanism of sound wave enhancement based on a phenomenon known as "soft" reflection. The enhancement is related to a progressive slowing down of the wave as it propagates along the material, which is associated with the group velocity of the local dispersion relation at the planes of the crystal. A model based on the coupled mode theory is proposed to predict and interpret this effect. Two different phenomena are observed here when dealing with dissipation in periodic structures. On one hand, when considering the propagation of in-plane sound waves in a periodic array of absorbing layers, an anomalous decrease in the absorption, combined with a simultaneous increase of reflection and transmission at Bragg frequencies is observed, in contrast to the usual decrease of transmission, characteristic in conservative periodic systems at these frequencies. For a similar layered media, backed now by a rigid reflector, out-of-plane waves impinging the structure from a homogeneous medium will increase dramatically the interaction strength. In other words, the time delay of sound waves inside the periodic system will be considerably increased resulting in an enhanced absorption, for a broadband spectral range. en_EN
dc.description.abstract [ES] Los cristales fonónicos son materiales artificiales formados por una disposición periódica de inclusiones en un medio, pudiendo ambos ser de carácter sólido o fluido. Controlando la geometría y el contraste de impedancias entre los materiales constituyentes se pueden controlar las propiedades dispersivas de las ondas. Cuando una onda propagante se encuentra un medio con diferentes propiedades físicas puede ser transmitida y reflejada, en medios sin pérdidas, pero también absorbida, si la disipación es tenida en cuenta. La presente tesis está dedicada al estudio de diferentes efectos presentes en cristales sónicos y fonónicos relacionados con la transmisión, reflexión y absorción de ondas, así como el desarrollo de una técnica para la caracterización de sus propiedades dispersivas, descritas por la estructura de bandas. En primer lugar, se estudia el control de la propagación de ondas en transmisión en sistemas conservativos. Específicamente, nuestro interés se centra en mostrar cómo los cristales sónicos son capaces de modificar la dispersión espacial de las ondas propagantes, dando lugar al control del ensanchamiento de haces de sonido. Haciendo uso de las curvas de dispersión espacial extraídas del análisis de la estructura de bandas, se predice primero la difracción nula y negativa de ondas a frecuencias cercanas al borde de la banda, resultando en la colimación y focalización de haces acústicos en el interior y detrás de un cristal sónico 3D, y posteriormente se demuestra mediante medidas experimentales. La eficiencia de focalización de un cristal sónico 3D está limitada debido a las múltiples reflexiones existentes en el interior del cristal. Para superar esta limitación se consideran estructuras axisimétricas trabajando en el régimen de longitud de onda larga, como lentes de gradiente de índice. En este régimen, las reflexiones internas se reducen fuertemente y, en configuración axisimétrica, la adaptación de simetría con fuentes acústicas radiando haces de sonido incrementa la eficiencia drásticamente. Además, la teoría de homogenización puede ser empleada para modelar la estructura como un medio efectivo con propiedades físicas efectivas, permitiendo el estudio del frente de ondas en términos refractivos. Se mostrará el modelado, diseño y caracterización de un dispositivo de focalización eficiente basado en los conceptos anteriores. Considérese ahora una estructura periódica en la que uno de los parámetros de la red, sea el paso de red o el factor de llenado, cambia gradualmente a lo largo de la dirección de propagación. Los cristales chirp representan este concepto y son empleados aquí para demostrar un mecanismo novedoso de incremento de la intensidad de la onda sonora basado en un fenómeno conocido como reflexión "suave". Este incremento está relacionado con una ralentización progresiva de la onda conforme se propaga a través del material, asociado con la velocidad de grupo de la relación de dispersión local en los planos del cristal. Un modelo basado en la teoría de modos acoplados es propuesto para predecir e interpretar este efecto. Se observan dos fenómenos diferentes al considerar pérdidas en estructuras periódicas. Por un lado, si se considera la propagación de ondas sonoras en un array periódico de capas absorbentes, cuyo frente de ondas es paralelo a los planos del cristal, se produce una reducción anómala en la absorción combinada con un incremento simultáneo de la reflexión y transmisión a las frecuencias de Bragg, de forma contraria a la habitual reducción de la transmisión, característica de sistemas periódicos conservativos a estas frecuencias. En el caso de la misma estructura laminada en la que se cubre uno de sus lados mediante un reflector rígido, la incidencia de ondas sonoras desde un medio homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal, produce un gran incremento de la fuerza de es_ES
dc.description.abstract [CA] Els cristalls fonònics són materials artificials formats per una disposició d'inclusions en un medi, ambdós poden ser sòlids o fluids. Controlant la geometría i el contrast d'impedàncies dels seus materials constituents, és poden controlar les propietats dispersives de les ondes, permetent una gran varietatde fenòmens fonamentals interessants en el context de la propagació d'ones. Quan una ona propagant troba un medi amb pèrdues amb propietats físiques diferents es pot transmetre i reflectir, però també absorbida si la dissipació es té en compte. Aquests fenòmens fonamentals s'han explicat clàssicament en el context de medis homogenis, però també ha sigut un tema de creixent interés en el context d'estructures periòdiques en els últims anys. Aquesta tesi doctoral tracta de l'estudi de diferents efectes en cristalls fonònics i sònics lligats a la transmissió, reflexió i absorció d'ones, així com del desenvolupament d'una tècnica de caracterització de les propietats dispersives, descrites mitjançant la estructura de bandes. En primer lloc, s'estudia el control de la propagació ondulatori en transmissió en sistemes conservatius. Més específicament, el nostre interés és mostrar com els cristalls sonors poden modificar la dispersió espacial d'ones propagants donant lloc al control de l'amplària per difracció dels feixos sonors. Mitjançant les corbes dispersió espacial obtingudes de l'anàlisi de l'estructura de bandes, es prediu, en primer lloc, la difracció d'ones zero i negativa a freqüències próximes al final de banda. El resultat és la collimació i focalització de feixos sonors dins i darrere de cristalls de so. Després es mostra amb mesures experimentals. L'eficiència de focalització d'un cristall de so 3D està limitada per la gran dispersió d'ones dins del cristall, que és característic del règim difractiu. Per a superar aquesta limitació, estructures axisimètriques que treballen en el règim de llargues longituds d'ona, i es comporten com a lents de gradient d'índex. En aquest règim, la dispersió es redueix enormement i, en una configuració axisimètrica, a causa de l'acoblament de la simetría amb les fonts acústiques que radien feixos sonors, l'eficiència de radiació s'incrementa significativament. D'altra banda, la teoria d'homogeneïtzació es pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de focalització basat en aquests conceptes. Considerem ara una estructura periòdica en la qual un dels seus paràmetres de xarxa, com ara la constant de xarxa o el factor d'ompliment canvia gradualment al llarg de la direcció de propagació. Els cristalls chirped representen aquest concepte i s'utilitzen ací per a demostrar un mecanisme nou d'intensificació d'ones sonores basat en el fenòmen conegut com a reflexió "suau". La intensificació està relacionada amb la alentiment progressiva de l'ona conforme propaga al llarg del material, que està associada amb la velocitat de grup de la relació de dispersió local en els diferents plànols del cristall. Es proposa un model basat en la teoria de modes acoblats per a predir i interpretar este efecte. Dos fenòmens diferents cal destacar quan es tracta d'estructures periòdiques amb dissipació. Per un costat, al considerar la propagació d'ones sonores en el plànol en un array periòdic de capes absorbents, s'observa una disminució anòmala de l'absorció i es combina amb un augment simultani de reflexió i transmissió en les freqüències de Bragg que contrasta amb la usual disminució de transmissió, característica dels sistemes conservatius a eixes freqüències. Per a un medi similar de capes, amb un reflector rígid darrere, les ones fora del pla incidint l'estructura des de un medi homogeni, augmentaran considerablement la interacció. En altres paraules, el retràs temporal de les ones sonores dins del sistema periòdic augmentarà significativament produint un augmen ca_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Periodic Structures es_ES
dc.subject Sonic Crystals, Phononic Crystals es_ES
dc.subject Transmission es_ES
dc.subject Reflection, Absorption es_ES
dc.subject Band Structure es_ES
dc.subject Dispersion Relation es_ES
dc.subject Focusing es_ES
dc.subject Focalization es_ES
dc.subject Collimation es_ES
dc.subject Spatial dispersion es_ES
dc.subject Beam es_ES
dc.subject Acoustic Beam es_ES
dc.subject Ultrasonic Beam es_ES
dc.subject Axisymmetric es_ES
dc.subject Symmetry Matching es_ES
dc.subject Gradient Index es_ES
dc.subject Lens es_ES
dc.subject Lenses es_ES
dc.subject Homogenization es_ES
dc.subject Refraction es_ES
dc.subject Refractive devices es_ES
dc.subject Long-wavelength es_ES
dc.subject Effective medium es_ES
dc.subject Effective properties es_ES
dc.subject Paraxial approximation es_ES
dc.subject Isofrequency lines es_ES
dc.subject Isofrequency contours es_ES
dc.subject Wave vector es_ES
dc.subject Chirped es_ES
dc.subject Tappered es_ES
dc.subject Rainbow trapping es_ES
dc.subject Mirage effect es_ES
dc.subject Chirped crystals es_ES
dc.subject Wave Enhancement es_ES
dc.subject Soft reflection es_ES
dc.subject Group velocity es_ES
dc.subject Slowing down es_ES
dc.subject Coupled Mode Theory es_ES
dc.subject CMT es_ES
dc.subject Linear Chirped es_ES
dc.subject Exponential chirped es_ES
dc.subject Dissipation es_ES
dc.subject Losses es_ES
dc.subject Porous absorber es_ES
dc.subject Porous material es_ES
dc.subject Porous layers es_ES
dc.subject Dissipative couple mode theory es_ES
dc.subject Modulation es_ES
dc.subject Loss modulation es_ES
dc.subject Band structure calculation es_ES
dc.subject Elastic waves es_ES
dc.subject Acoustic waves es_ES
dc.subject Time-marching es_ES
dc.subject Algorithm es_ES
dc.subject Bloch vector es_ES
dc.subject Bloch boundary conditions es_ES
dc.subject Boundary conditions es_ES
dc.subject Unit cell es_ES
dc.subject Vibrational modes es_ES
dc.subject Resonant peaks es_ES
dc.subject Resonant modes es_ES
dc.subject Accuracy es_ES
dc.subject Convergence es_ES
dc.subject Computation time es_ES
dc.subject Solid-Solid es_ES
dc.subject Solid-fluid es_ES
dc.subject Lamella cyrstal es_ES
dc.subject Extraordinary absorption es_ES
dc.subject Interaction strength es_ES
dc.subject Time delay es_ES
dc.subject Fourier Transform es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Transmission, reflection and absorption in Sonic and Phononic Crystals es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/56463 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cebrecos Ruiz, A. (2015). Transmission, reflection and absorption in Sonic and Phononic Crystals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56463 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\9090 es_ES
dc.description.award Premios Extraordinarios de tesis doctorales es_ES
dc.description.compendio Compendio es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem