Mostrar el registro sencillo del ítem
dc.contributor.author | Martí Guerola, Amparo | es_ES |
dc.contributor.author | Cobos Serrano, Máximo | es_ES |
dc.contributor.author | López Monfort, José Javier | es_ES |
dc.date.accessioned | 2015-11-02T08:28:06Z | |
dc.date.issued | 2012-02 | |
dc.identifier.issn | 0001-4966 | |
dc.identifier.uri | http://hdl.handle.net/10251/56829 | |
dc.description.abstract | Automatic speech recognition (ASR) refers to the task of extracting a transcription of the linguistic content of an acoustical speech signal automatically. Despite several decades of research in this important area of acoustic signal processing, the accuracy of ASR systems is still far behind human performance, especially in adverse acoustic scenarios. In this context, one of the most challenging situations is the one concerning simultaneous speech in cocktail-party environments. Although source separation methods have already been investigated to deal with this problem, the separation process is not perfect and the resulting artifacts pose an additional problem to ASR performance. In this paper, a specific training to improve the percentage of recognized words in real simultaneous speech cases is proposed. The combination of source separation and this specific training is explored and evaluated under different acoustical conditions, leading to improvements of up to a 35% in ASR performance. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3675001] | es_ES |
dc.description.sponsorship | The Spanish Ministry of Science and Innovation supported this work under Grant No. TEC2009-14414-C03-01. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Acoustical Society of America | es_ES |
dc.relation.ispartof | Journal of the Acoustical Society of America | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Automatic speech recognition | es_ES |
dc.subject | Human performance | es_ES |
dc.subject | Separation process | es_ES |
dc.subject | Source separation | es_ES |
dc.subject | Speech signals | es_ES |
dc.subject | Acoustics | es_ES |
dc.subject | Physics | es_ES |
dc.subject | Separation | es_ES |
dc.subject | Algorithm | es_ES |
dc.subject | Article | es_ES |
dc.subject | Human | es_ES |
dc.subject | Noise | es_ES |
dc.subject | Perception | es_ES |
dc.subject | Speech | es_ES |
dc.subject | Speech perception | es_ES |
dc.subject | Standard | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject | Humans | es_ES |
dc.subject | Perceptual Masking | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Automatic speech recognition in cocktail-party situations : a specific training for separated speech | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1121/1.3675001 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2009-14414-C03-01/ES/Procesado De Sonido Para Entornos Emergentes De Comunicacion/ / | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Martí Guerola, A.; Cobos Serrano, M.; López Monfort, JJ. (2012). Automatic speech recognition in cocktail-party situations : a specific training for separated speech. Journal of the Acoustical Society of America. 131(2):1529-1535. doi:10.1121/1.3675001 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1121/1.3675001 | es_ES |
dc.description.upvformatpinicio | 1529 | es_ES |
dc.description.upvformatpfin | 1535 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 131 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 211996 | es_ES |
dc.identifier.eissn | 1520-8524 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |