- -

Ground truth annotation of traffic video data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ground truth annotation of traffic video data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mossi García, José Manuel es_ES
dc.contributor.author Albiol Colomer, Antonio José es_ES
dc.contributor.author Albiol Colomer, Alberto es_ES
dc.contributor.author Oliver Moll, Javier es_ES
dc.date.accessioned 2015-11-02T11:30:57Z
dc.date.available 2015-11-02T11:30:57Z
dc.date.issued 2014-05
dc.identifier.issn 1380-7501
dc.identifier.uri http://hdl.handle.net/10251/56854
dc.description.abstract This paper presents a software application to generate ground-truth data on video files from traffic surveillance cameras used for Intelligent Transportation Systems (IT systems). The computer vision system to be evaluated counts the number of vehicles that cross a line per time unit intensity-, the average speed and the occupancy. The main goal of the visual interface presented in this paper is to be easy to use without the requirement of any specific hardware. It is based on a standard laptop or desktop computer and a Jog shuttle wheel. The setup is efficient and comfortable because one hand of the annotating person is almost all the time on the space key of the keyboard while the other hand is on the jog shuttle wheel. The mean time required to annotate a video file ranges from 1 to 5 times its duration (per lane) depending on the content. Compared to general purpose annotation tool a time factor gain of about 7 times is achieved. es_ES
dc.description.sponsorship This work was funded by the Spanish Government project MARTA under the CENIT program and CICYT contract TEC2009-09146. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Multimedia Tools and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Traffic es_ES
dc.subject Ground truth es_ES
dc.subject Vehicle es_ES
dc.subject Video es_ES
dc.subject Intelligent transportation systems es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Ground truth annotation of traffic video data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11042-013-1396-x
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-09146/ES/Nuevas Tecnicas Para Video Vigilancia Inteligente/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Mossi García, JM.; Albiol Colomer, AJ.; Albiol Colomer, A.; Oliver Moll, J. (2014). Ground truth annotation of traffic video data. Multimedia Tools and Applications. 1-14. https://doi.org/10.1007/s11042-013-1396-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11042-013-1396-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 256130 es_ES
dc.identifier.eissn 1573-7721
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Albiol A et al (2011) Detection of parked vehicles using spatiotemporal maps. IEEE Trans Intell Transport Syst 12(4):1277–1291 es_ES
dc.description.references Blunsden SJ, Fisher R (2010) The BEHAVE video dataset: ground truthed video for multi-person behavior classification. Annal British Mach Vis Assoc 4:1–12 es_ES
dc.description.references Bradski G, Kaehler A (2008) Learning OpenCV: Computer vision with the OpenCV library. O'Reilly Media, Incorporated es_ES
dc.description.references Brooke J. SUS: a “quick and dirty” usability scale. Usability evaluation in industry. Taylor and Francis es_ES
dc.description.references Brostow GJ et al (2009) Semantic object classes in video: a high-definition ground truth database. Pattern Recognit Lett 30(2):88–97 es_ES
dc.description.references Buch N et al (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Trans Intell Transp Syst 12(3):920–939 es_ES
dc.description.references D’Orazio T et al. (2009) A semi-automatic system for ground truth generation of soccer video sequences. Advanced Video and Signal Based Surveillance, 2009. AVSS’09. Sixth IEEE International Conference on (Sep. 2009), 559–564 es_ES
dc.description.references Dollar P et al (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761 es_ES
dc.description.references Faro A et al (2011) Adaptive background modeling integrated with luminosity sensors and occlusion processing for reliable vehicle detection. IEEE Trans Intell Transport Syst 12(4):1398–1412 es_ES
dc.description.references Giro-i-Nieto X et al (2010) GAT: a graphical annotation tool for semantic regions. Multimed Tool Appl 46(2–3):155–174 es_ES
dc.description.references i-LIDS. Image Library for Intelligent Detection Systems: www.ilids.co.uk . Home Office Scientific Development Branch, United Kingdom. Last Accessed February 2013 es_ES
dc.description.references Kasturi R et al (2009) Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol. IEEE Trans Pattern Anal Mach Intell 31(2):319–336 es_ES
dc.description.references Laganière R (2011) OpenCV 2 computer vision application programming cookbook. Packt Pub Limited es_ES
dc.description.references Lorist MM et al (2000) Mental fatigue and task control: planning and preparation. Psychophysiology 37(5):614–625 es_ES
dc.description.references Russell B et al (2008) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77(1):157–173 es_ES
dc.description.references Serrano M, Gracía J, Patricio M, Molina J (2010). Interactive video annotation tool. Distributed Computing and Artificial Intelligence, 325–332 es_ES
dc.description.references Traffic City Cameras. Ajuntament de València, Spain. http://camaras.valencia.es . Last Accessed February 2013 es_ES
dc.description.references TREC video retrieval evaluation. http://www-nlpir.nist.gov/projects/trecvid/ es_ES
dc.description.references Vezzani R, Cucchiara R (2010) Video Surveillance Online Repository (ViSOR): an integrated framework. Multimed Tool Appl 50(2):359–380 es_ES
dc.description.references ViPER: the video performance evaluation resource: http://viper-toolkit.sourceforge.net/ es_ES
dc.description.references Volkmer T et al. (2005) A web-based system for collaborative annotation of large image and video collections: an evaluation and user study. Proceedings of the 13th annual ACM international conference on Multimedia (New York, NY, USA, 2005), 892–901 es_ES
dc.description.references Zhang HB, Li SA, Chen SY, Su SZ, Duh DJ, Li SZ (2012) Adaptive photograph retrieval method. Multimedia Tools and Applications, Published online September 2012. es_ES
dc.description.references Zou Y et al (2011) Traffic incident classification at intersections based on image sequences by HMM/SVM classifiers. Multimed Tool Appl 52(1):133–145 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem