- -

Experimental evidence of super-resolution better than lambda/105 with positive refraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental evidence of super-resolution better than lambda/105 with positive refraction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Miñano Domínguez, Juan Carlos es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.contributor.author González, Juan Carlos es_ES
dc.contributor.author Benítez, Pablo es_ES
dc.contributor.author Grabovickic, Dejan es_ES
dc.contributor.author Carbonell Olivares, Jorge es_ES
dc.contributor.author Ahmadpanahi, Seyed Hamed es_ES
dc.date.accessioned 2015-11-09T08:00:54Z
dc.date.available 2015-11-09T08:00:54Z
dc.date.issued 2014-03-13
dc.identifier.uri http://hdl.handle.net/10251/57194
dc.description.abstract Super-resolution (SR) systems surpassing the Abbe diffraction limit have been theoretically and experimentally demonstrated using a number of different approaches and technologies: using materials with a negative refractive index, utilizing optical super-oscillation, using a resonant metalens, etc. However, recently it has been proved theoretically that in the Maxwell fish-eye lens (MFE), a device made of positive refractive index materials, the same phenomenon takes place. Moreover, using a simpler device equivalent to the MFE called the spherical geodesic waveguide (SGW), an SR of up to lambda/3000 was simulated in COMSOL. Until now, only one piece of experimental evidence of SR with positive refraction has been reported (up to lambda/5) for an MFE prototype working at microwave frequencies. Here, experimental results are presented for an SGW prototype showing an SR of up to lambda/105. The SGW prototype consists of two concentric metallic spheres with an air space in between and two coaxial ports acting as an emitter and a receiver. The prototype has been analyzed in the range 1 GHz to 1.3 GHz. es_ES
dc.description.sponsorship The authors would like to thank the Spanish Ministry MCEI (Consolider program CSD2008-00066, PERIMAGE: TEC2011-24019, TEC2010-16948) for the support given in the preparation of the present work. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Open Access Journals es_ES
dc.relation.ispartof New Journal of Physics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Perfect imaging es_ES
dc.subject Super-resolution es_ES
dc.subject Spherical geodesic waveguide es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Experimental evidence of super-resolution better than lambda/105 with positive refraction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/16/3/033015
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-24019/ES/RESOLUCION SUBLAMBDA CON SISTEMAS DE INDICE DE REFRACCION POSITIVO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-16948/ES/SISTEMAS ELECTROMAGNETICOS AVANZADOS PARA COMUNICACIONES Y APLICACIONES MEDICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Miñano Domínguez, JC.; Sánchez-Dehesa Moreno-Cid, J.; González, JC.; Benítez, P.; Grabovickic, D.; Carbonell Olivares, J.; Ahmadpanahi, SH. (2014). Experimental evidence of super-resolution better than lambda/105 with positive refraction. New Journal of Physics. 16. https://doi.org/10.1088/1367-2630/16/3/033015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1367-2630/16/3/033015 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.relation.senia 264403 es_ES
dc.identifier.eissn 1367-2630
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Synge, E. H. (1928). XXXVIII.A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(35), 356-362. doi:10.1080/14786440808564615 es_ES
dc.description.references Pohl, D. W., Denk, W., & Lanz, M. (1984). Optical stethoscopy: Image recording with resolution λ/20. Applied Physics Letters, 44(7), 651-653. doi:10.1063/1.94865 es_ES
dc.description.references Lewis, A., Isaacson, M., Harootunian, A., & Muray, A. (1984). Development of a 500 Å spatial resolution light microscope. Ultramicroscopy, 13(3), 227-231. doi:10.1016/0304-3991(84)90201-8 es_ES
dc.description.references Hell, S. W., & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19(11), 780. doi:10.1364/ol.19.000780 es_ES
dc.description.references Lemoult, F., Lerosey, G., de Rosny, J., & Fink, M. (2010). Resonant Metalenses for Breaking the Diffraction Barrier. Physical Review Letters, 104(20). doi:10.1103/physrevlett.104.203901 es_ES
dc.description.references Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 es_ES
dc.description.references Stockman, M. I. (2007). Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality. Physical Review Letters, 98(17). doi:10.1103/physrevlett.98.177404 es_ES
dc.description.references Kinsler, P., & McCall, M. W. (2008). Causality-Based Criteria for a Negative Refractive Index Must Be Used With Care. Physical Review Letters, 101(16). doi:10.1103/physrevlett.101.167401 es_ES
dc.description.references Di Francia, G. T. (1952). Super-gain antennas and optical resolving power. Il Nuovo Cimento, 9(S3), 426-438. doi:10.1007/bf02903413 es_ES
dc.description.references Leonhardt, U. (2009). Perfect imaging without negative refraction. New Journal of Physics, 11(9), 093040. doi:10.1088/1367-2630/11/9/093040 es_ES
dc.description.references Leonhardt, U., & Philbin, T. G. (2010). Perfect imaging with positive refraction in three dimensions. Physical Review A, 81(1). doi:10.1103/physreva.81.011804 es_ES
dc.description.references Benítez, P., Miñano, J. C., & González, J. C. (2010). Perfect focusing of scalar wave fields in three dimensions. Optics Express, 18(8), 7650. doi:10.1364/oe.18.007650 es_ES
dc.description.references Miñano, J. C., Marqués, R., González, J. C., Benítez, P., Delgado, V., Grabovickic, D., & Freire, M. (2011). Super-resolution for a point source better thanλ/500 using positive refraction. New Journal of Physics, 13(12), 125009. doi:10.1088/1367-2630/13/12/125009 es_ES
dc.description.references Miñano, J. C., Benítez, P., & González, J. C. (2010). Perfect imaging with geodesic waveguides. New Journal of Physics, 12(12), 123023. doi:10.1088/1367-2630/12/12/123023 es_ES
dc.description.references González, J. C., Benítez, P., Miñano, J. C., & Grabovičkić, D. (2012). Perfect imaging analysis of the spherical geodesic waveguide. Optical Systems Design 2012. doi:10.1117/12.981190 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem