Mostrar el registro sencillo del ítem
dc.contributor.author | Miñano Domínguez, Juan Carlos | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.contributor.author | González, Juan Carlos | es_ES |
dc.contributor.author | Benítez, Pablo | es_ES |
dc.contributor.author | Grabovickic, Dejan | es_ES |
dc.contributor.author | Carbonell Olivares, Jorge | es_ES |
dc.contributor.author | Ahmadpanahi, Seyed Hamed | es_ES |
dc.date.accessioned | 2015-11-09T08:00:54Z | |
dc.date.available | 2015-11-09T08:00:54Z | |
dc.date.issued | 2014-03-13 | |
dc.identifier.uri | http://hdl.handle.net/10251/57194 | |
dc.description.abstract | Super-resolution (SR) systems surpassing the Abbe diffraction limit have been theoretically and experimentally demonstrated using a number of different approaches and technologies: using materials with a negative refractive index, utilizing optical super-oscillation, using a resonant metalens, etc. However, recently it has been proved theoretically that in the Maxwell fish-eye lens (MFE), a device made of positive refractive index materials, the same phenomenon takes place. Moreover, using a simpler device equivalent to the MFE called the spherical geodesic waveguide (SGW), an SR of up to lambda/3000 was simulated in COMSOL. Until now, only one piece of experimental evidence of SR with positive refraction has been reported (up to lambda/5) for an MFE prototype working at microwave frequencies. Here, experimental results are presented for an SGW prototype showing an SR of up to lambda/105. The SGW prototype consists of two concentric metallic spheres with an air space in between and two coaxial ports acting as an emitter and a receiver. The prototype has been analyzed in the range 1 GHz to 1.3 GHz. | es_ES |
dc.description.sponsorship | The authors would like to thank the Spanish Ministry MCEI (Consolider program CSD2008-00066, PERIMAGE: TEC2011-24019, TEC2010-16948) for the support given in the preparation of the present work. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Open Access Journals | es_ES |
dc.relation.ispartof | New Journal of Physics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Perfect imaging | es_ES |
dc.subject | Super-resolution | es_ES |
dc.subject | Spherical geodesic waveguide | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Experimental evidence of super-resolution better than lambda/105 with positive refraction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1367-2630/16/3/033015 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-24019/ES/RESOLUCION SUBLAMBDA CON SISTEMAS DE INDICE DE REFRACCION POSITIVO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-16948/ES/SISTEMAS ELECTROMAGNETICOS AVANZADOS PARA COMUNICACIONES Y APLICACIONES MEDICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Miñano Domínguez, JC.; Sánchez-Dehesa Moreno-Cid, J.; González, JC.; Benítez, P.; Grabovickic, D.; Carbonell Olivares, J.; Ahmadpanahi, SH. (2014). Experimental evidence of super-resolution better than lambda/105 with positive refraction. New Journal of Physics. 16. https://doi.org/10.1088/1367-2630/16/3/033015 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1367-2630/16/3/033015 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.relation.senia | 264403 | es_ES |
dc.identifier.eissn | 1367-2630 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Synge, E. H. (1928). XXXVIII.A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(35), 356-362. doi:10.1080/14786440808564615 | es_ES |
dc.description.references | Pohl, D. W., Denk, W., & Lanz, M. (1984). Optical stethoscopy: Image recording with resolution λ/20. Applied Physics Letters, 44(7), 651-653. doi:10.1063/1.94865 | es_ES |
dc.description.references | Lewis, A., Isaacson, M., Harootunian, A., & Muray, A. (1984). Development of a 500 Å spatial resolution light microscope. Ultramicroscopy, 13(3), 227-231. doi:10.1016/0304-3991(84)90201-8 | es_ES |
dc.description.references | Hell, S. W., & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19(11), 780. doi:10.1364/ol.19.000780 | es_ES |
dc.description.references | Lemoult, F., Lerosey, G., de Rosny, J., & Fink, M. (2010). Resonant Metalenses for Breaking the Diffraction Barrier. Physical Review Letters, 104(20). doi:10.1103/physrevlett.104.203901 | es_ES |
dc.description.references | Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 | es_ES |
dc.description.references | Stockman, M. I. (2007). Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle of Causality. Physical Review Letters, 98(17). doi:10.1103/physrevlett.98.177404 | es_ES |
dc.description.references | Kinsler, P., & McCall, M. W. (2008). Causality-Based Criteria for a Negative Refractive Index Must Be Used With Care. Physical Review Letters, 101(16). doi:10.1103/physrevlett.101.167401 | es_ES |
dc.description.references | Di Francia, G. T. (1952). Super-gain antennas and optical resolving power. Il Nuovo Cimento, 9(S3), 426-438. doi:10.1007/bf02903413 | es_ES |
dc.description.references | Leonhardt, U. (2009). Perfect imaging without negative refraction. New Journal of Physics, 11(9), 093040. doi:10.1088/1367-2630/11/9/093040 | es_ES |
dc.description.references | Leonhardt, U., & Philbin, T. G. (2010). Perfect imaging with positive refraction in three dimensions. Physical Review A, 81(1). doi:10.1103/physreva.81.011804 | es_ES |
dc.description.references | Benítez, P., Miñano, J. C., & González, J. C. (2010). Perfect focusing of scalar wave fields in three dimensions. Optics Express, 18(8), 7650. doi:10.1364/oe.18.007650 | es_ES |
dc.description.references | Miñano, J. C., Marqués, R., González, J. C., Benítez, P., Delgado, V., Grabovickic, D., & Freire, M. (2011). Super-resolution for a point source better thanλ/500 using positive refraction. New Journal of Physics, 13(12), 125009. doi:10.1088/1367-2630/13/12/125009 | es_ES |
dc.description.references | Miñano, J. C., Benítez, P., & González, J. C. (2010). Perfect imaging with geodesic waveguides. New Journal of Physics, 12(12), 123023. doi:10.1088/1367-2630/12/12/123023 | es_ES |
dc.description.references | González, J. C., Benítez, P., Miñano, J. C., & Grabovičkić, D. (2012). Perfect imaging analysis of the spherical geodesic waveguide. Optical Systems Design 2012. doi:10.1117/12.981190 | es_ES |