Mostrar el registro sencillo del ítem
dc.contributor.author | Monzó Ferrer, José María | es_ES |
dc.contributor.author | Ros García, Ana | es_ES |
dc.contributor.author | Herrero Bosch, Vicente | es_ES |
dc.contributor.author | Perino Vicentini, Ivan Virgilio | es_ES |
dc.contributor.author | Aliaga Varea, Ramón José | es_ES |
dc.contributor.author | Gadea Gironés, Rafael | es_ES |
dc.contributor.author | Colom Palero, Ricardo José | es_ES |
dc.date.accessioned | 2015-11-10T08:18:35Z | |
dc.date.available | 2015-11-10T08:18:35Z | |
dc.date.issued | 2013-03 | |
dc.identifier.uri | http://hdl.handle.net/10251/57251 | |
dc.description.abstract | [EN] Improving timing resolution in positron emission tomography (PET), thus having fine time information of the detected pulses, is important to increase the reconstructed images signal to noise ratio (SNR) [1]. In the present work, an integrated circuit topology for time extraction of the incoming pulses is evaluated. An accurate simulation including the detector physics and the electronics with different configurations has been developed. The selected architecture is intended for a PET system based on a continuous scintillation crystal attached to a SiPM array. The integrated circuit extracts the time stamp from the first few photons generated when the gamma-ray interacts with the scintillator, thus obtaining the best time resolution. To get the time stamp from the detected pulses, a time to digital converter (TDC) array based architecture has been proposed as in [2] or [3]. The TDC input stage uses a current comparator to transform the analog signal into a digital signal. Individually configurable trigger levels allow us to avoid false triggers due to signal noise. Using a TDC per SiPM configuration results in a very area consuming integrated circuit. One solution to this problem is to join several SiPM outputs to one TDC. This reduces the number of TDCs but, on the other hand, the first photons will be more difficult to be detected. For this reason, it is important to simulate how the time resolution is degraded when the number of TDCs is reduced. Following this criteria, the best configuration will be selected considering the trade-off between achievable time resolution and the cost per chip. A simulation is presented that uses Geant4 for simulation of the physics process and, for the electronic blocks, spice and Matlab. The Geant4 stage simulates the gamma-ray interaction with the scintillator, the photon shower generation and the first stages of the SiPM. The electronics simulation includes an electrical model of the SiPMarray and all the integrated circuitry that generates the time stamps. Time resolution results are analyzed using Matlab. The goal is to analyze the best resolution achievable with the SiPM and its degradation due to different circuitry configurations. | es_ES |
dc.description.sponsorship | This work was supported by local government Conselleria d’Educacio — Generalitat Valenciana research program GV/2011/068. | |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Journal of Instrumentation | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Gamma camera | es_ES |
dc.subject | SPECT | es_ES |
dc.subject | PET PET/CT | es_ES |
dc.subject | Coronary CT angiography (CTA) | es_ES |
dc.subject | Timing detectors | es_ES |
dc.subject | Electronic detector readout concepts (solid-state) | es_ES |
dc.subject | Front-end electronics for detector readout | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | |
dc.identifier.doi | 10.1088/1748-0221/8/03/C03017 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2011%2F068/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Monzó Ferrer, JM.; Ros García, A.; Herrero Bosch, V.; Perino Vicentini, IV.; Aliaga Varea, RJ.; Gadea Gironés, R.; Colom Palero, RJ. (2013). Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems. Journal of Instrumentation. 8. https://doi.org/10.1088/1748-0221/8/03/C03017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 14th International workshop on radiation imaging detectors | |
dc.relation.conferencedate | July 1-5, 2012 | |
dc.relation.conferenceplace | Figueira da Foz, Portugal | |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1748-0221/8/03/C03017 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.relation.senia | 238055 | es_ES |
dc.identifier.eissn | 1748-0221 | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Moses, W. W. (2003). Time of flight in pet revisited. IEEE Transactions on Nuclear Science, 50(5), 1325-1330. doi:10.1109/tns.2003.817319 | es_ES |
dc.description.references | Fang, X., Ollivier-Henry, N., Gao, W., Hu-Guo, C., Colledani, C., Humbert, B., … Hu, Y. (2011). IMOTEPAD: A mixed-signal 64-channel front-end ASIC for small-animal PET imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 634(1), 106-112. doi:10.1016/j.nima.2011.01.082 | es_ES |
dc.description.references | Abidi, M., Koua Calliste, K., Kanoun, M., Panier, S., Arpin, L., Tetraul, M.-A., … Fontaine, R. (2010). A Delay Locked Loop for fine time base generation in a positron emission tomography scanner. 5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era. doi:10.1109/dtis.2010.5487578 | es_ES |
dc.description.references | Karp, J. S., Surti, S., Daube-Witherspoon, M. E., & Muehllehner, G. (2008). Benefit of Time-of-Flight in PET: Experimental and Clinical Results. Journal of Nuclear Medicine, 49(3), 462-470. doi:10.2967/jnumed.107.044834 | es_ES |
dc.description.references | Monzo, J. M., Aliaga, R. J., Herrero, V., Martinez, J. D., Mateo, F., Sebastia, A., … Pavon, N. (2008). Accurate Simulation Testbench for Nuclear Imaging Systems. IEEE Transactions on Nuclear Science, 55(1), 421-428. doi:10.1109/tns.2007.912878 | es_ES |
dc.description.references | Avella, P., De Santo, A., Lohstroh, A., Sajjad, M. T., & Sellin, P. J. (2012). A study of timing properties of Silicon Photomultipliers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 695, 257-260. doi:10.1016/j.nima.2011.11.049 | es_ES |
dc.description.references | Seifert, S., van Dam, H. T., Huizenga, J., Vinke, R., Dendooven, P., Lohner, H., & Schaart, D. R. (2009). Simulation of Silicon Photomultiplier Signals. IEEE Transactions on Nuclear Science, 56(6), 3726-3733. doi:10.1109/tns.2009.2030728 | es_ES |
dc.description.references | Corsi, F., Marzocca, C., Perrotta, A., Dragone, A., Foresta, M., Del Guerra, A., … Levi, G. (2006). Electrical Characterization of Silicon Photo-Multiplier Detectors for Optimal Front-End Design. 2006 IEEE Nuclear Science Symposium Conference Record. doi:10.1109/nssmic.2006.356076 | es_ES |