- -

Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation

Show full item record

Neatu, S.; Puche Panadero, M.; Fornes Seguí, V.; García Gómez, H. (2014). Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation. Chemical Communications. 50(93):14643-14646. https://doi.org/10.1039/c4cc05931j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57291

Files in this item

Item Metadata

Title: Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation
Author: Neatu, Stefan Puche Panadero, Marta Fornes Seguí, Vicente García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
Layered magadiite and zeolites Y containing framework Co or small CoO clusters in the pores have been synthesized and tested as photocatalysts for water splitting, in the absence and presence of methanol, upon UV or ...[+]
Subjects: Titanium-Oxides , Spectroscopy , Magadiite
Copyrigths: Cerrado
Source:
Chemical Communications. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/c4cc05931j
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c4cc05931j
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/EC/FP7/298740/EU/Carbon dioxide photoreduction: A great challenge for photocatalysis/
Thanks:
This work was supported by the Spanish Ministry of Economy and Competitiveness (Severo Ochea and CTQ-2012-32315) and the Marie Curie project PIEF-GA-2011-298740, and the Generalidad Valenciana (Prometeo 2012/2013).
Type: Artículo

References

Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503-6570. doi:10.1021/cr1001645

Mallouk, T. E. (2010). The Emerging Technology of Solar Fuels. The Journal of Physical Chemistry Letters, 1(18), 2738-2739. doi:10.1021/jz101161s

Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38(1), 253-278. doi:10.1039/b800489g [+]
Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503-6570. doi:10.1021/cr1001645

Mallouk, T. E. (2010). The Emerging Technology of Solar Fuels. The Journal of Physical Chemistry Letters, 1(18), 2738-2739. doi:10.1021/jz101161s

Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38(1), 253-278. doi:10.1039/b800489g

Liao, L., Zhang, Q., Su, Z., Zhao, Z., Wang, Y., Li, Y., … Bao, J. (2013). Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nature Nanotechnology, 9(1), 69-73. doi:10.1038/nnano.2013.272

Asahi, R. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293(5528), 269-271. doi:10.1126/science.1061051

Khan, S. U. M. (2002). Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 297(5590), 2243-2245. doi:10.1126/science.1075035

Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 331(6018), 746-750. doi:10.1126/science.1200448

Garcés, J. M. (1988). Hypothetical Structures of Magadiite and Sodium Octosilicate and Structural Relationships Between the Layered Alkali Metal Silicates and the Mordenite- and Pentasil-Group Zeolites1. Clays and Clay Minerals, 36(5), 409-418. doi:10.1346/ccmn.1988.0360505

Pinnavaia, T. J., Johnson, I. D., & Lipsicas, M. (1986). A 29Si MAS NMR study of tetrahedral site distributions in the layered silicic acid H+-magadiite (H2Si14O29 · nH2O) and in Na+-magadiite (Na2Si14O29 · nH2O). Journal of Solid State Chemistry, 63(1), 118-121. doi:10.1016/0022-4596(86)90159-3

Barea, E. M., Fornés, V., Corma, A., Bourges, P., Guillon, E., & Puntes, V. F. (2004). A new synthetic route to produce metal zeolites with subnanometric magnetic clusters. Chem. Commun., (17), 1974-1975. doi:10.1039/b407225a

R. M. Barrer , Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982

Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i

Shimizu, S., Kiyozumi, Y., Maeda, K., Mizukami, F., Pál-Borbély, G., Mihályi, R. M., & Beyer, H. K. (1996). Transformation of intercalated layered silicates to zeolites in the solid state. Advanced Materials, 8(9), 759-762. doi:10.1002/adma.19960080913

Nigro, E., Testa, F., Aiello, R., Lentz, P., Fonseca, A., Oszko, A., … Nagy, J. B. (2001). Synthesis and characterization of Co-containing zeolites of MFI structure. Oxide-based Systems at the Crossroads of Chemistry - Second International Workshop October 8-11, 2000, Como, Italy, 353-360. doi:10.1016/s0167-2991(01)80164-6

Verberckmoes, A. A., Uytterhoeven, M. G., & Schoonheydt, R. A. (1997). Framework and extra-framework Co2+ in CoAPO-5 by diffuse reflectance spectroscopy. Zeolites, 19(2-3), 180-189. doi:10.1016/s0144-2449(97)00068-7

Verberckmoes, A. A., Weckhuysen, B. M., & Schoonheydt, R. A. (1998). Spectroscopy and coordination chemistry of cobalt in molecular sieves. Microporous and Mesoporous Materials, 22(1-3), 165-178. doi:10.1016/s1387-1811(98)00091-2

Frost, D. C., McDowell, C. A., & Woolsey, I. S. (1974). X-ray photoelectron spectra of cobalt compounds. Molecular Physics, 27(6), 1473-1489. doi:10.1080/00268977400101251

Weckhuysen, B. M., Rao, R. R., A. Martens, J., & Schoonheydt, R. A. (1999). Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution. European Journal of Inorganic Chemistry, 1999(4), 565-577. doi:10.1002/(sici)1099-0682(199904)1999:4<565::aid-ejic565>3.0.co;2-y

P. A. Wright and J. A.Conner, Microporous Framework Solids, The Royal Society of Chemistry, Cambridge, 2007

Tang, Q., Zhang, Q., Wang, P., Wang, Y., & Wan, H. (2004). Characterizations of Cobalt Oxide Nanoparticles within Faujasite Zeolites and the Formation of Metallic Cobalt. Chemistry of Materials, 16(10), 1967-1976. doi:10.1021/cm030626z

Z. Sen , Solar Energy Fundamentals and Modeling Techniques, Springer Verlag, London, 2008

Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic Reduction of CO2with H2O on Titanium Oxides Anchored within Micropores of Zeolites:  Effects of the Structure of the Active Sites and the Addition of Pt. The Journal of Physical Chemistry B, 101(14), 2632-2636. doi:10.1021/jp962696h

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record