Mostrar el registro sencillo del ítem
dc.contributor.author | Gargallo Jaquotot, Bernardo Andrés | es_ES |
dc.contributor.author | Muñoz Muñoz, Pascual | es_ES |
dc.date.accessioned | 2015-11-12T13:28:00Z | |
dc.date.available | 2015-11-12T13:28:00Z | |
dc.date.issued | 2013-03-25 | |
dc.identifier.uri | http://hdl.handle.net/10251/57393 | |
dc.description | © 2013 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited | es_ES |
dc.description.abstract | In this paper, a theoretical model for an Interleave-Chirped Arrayed Waveguide Grating (IC-AWG) is presented. The model describes the operation of the device by means of a field (amplitude and phase) transfer response. The validation of the model is accomplished by means of simulations, using parameters from previously fabricated devices. A novel design procedure is derived from the model, and it is later on employed to demonstrate the design of colorless universal IC-AWGs. The model can be readily applied to the analysis and design of future multi-wavelength optical coherent communications receivers and optical waveform analyzers. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support by the Spanish MICINN Project TEC2010-21337, acronym ATOMIC; project FEDER UPVOV10-3E-492 and project FEDER UPVOV08-3E-008. B. Gargallo acknowledges financial support through FPI grant BES-2011-046100. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America: Open Access Journals | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Coherent optical communications | es_ES |
dc.subject | Paraxial wave optics | es_ES |
dc.subject | Integrated optics devices | es_ES |
dc.subject | Polarization-selective devices | es_ES |
dc.subject | Wavelength filtering devices. | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Full field model for interleave-chirped arrayed waveguide gratings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.21.006928 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-046100/ES/BES-2011-046100/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Gargallo Jaquotot, BA.; Muñoz Muñoz, P. (2013). Full field model for interleave-chirped arrayed waveguide gratings. Optics Express. 21(6):6928-6942. https://doi.org/10.1364/OE.21.006928 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.21.006928 | es_ES |
dc.description.upvformatpinicio | 6928 | es_ES |
dc.description.upvformatpfin | 6942 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 238413 | es_ES |
dc.identifier.eissn | 1094-4087 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Nagarajan, R., Kato, M., Lambert, D., Evans, P., Corzine, S., Lal, V., … Welch, D. (2012). Terabit/s class InP photonic integrated circuits. Semiconductor Science and Technology, 27(9), 094003. doi:10.1088/0268-1242/27/9/094003 | es_ES |
dc.description.references | Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 | es_ES |
dc.description.references | Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905 | es_ES |
dc.description.references | Heaton, J. M., & Jenkins, R. M. (1999). General matrix theory of self-imaging in multimode interference (MMI) couplers. IEEE Photonics Technology Letters, 11(2), 212-214. doi:10.1109/68.740707 | es_ES |
dc.description.references | Van Roey, J., van der Donk, J., & Lagasse, P. E. (1981). Beam-propagation method: analysis and assessment. Journal of the Optical Society of America, 71(7), 803. doi:10.1364/josa.71.000803 | es_ES |
dc.description.references | Doerr, C. R., Zhang, L., & Winzer, P. J. (2011). Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating. Journal of Lightwave Technology, 29(4), 536-541. doi:10.1109/jlt.2010.2097240 | es_ES |
dc.description.references | Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 | es_ES |
dc.description.references | Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441 | es_ES |
dc.description.references | Wan, Y., & Hui, R. (2007). Design of WDM Cross Connect Based on Interleaved AWG (IAWG) and a Phase Shifter Array. Journal of Lightwave Technology, 25(6), 1390-1400. doi:10.1109/jlt.2007.896808 | es_ES |
dc.description.references | Spiekman, L. H., Amersfoort, M. R., De Vreede, A. H., van Ham, F. P. G. M., Kuntze, A., Pedersen, J. W., … Smit, M. K. (1996). Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM. Journal of Lightwave Technology, 14(6), 991-995. doi:10.1109/50.511599 | es_ES |
dc.description.references | LOHMEYER, M. (1997). Optical and Quantum Electronics, 29(9), 907-922. doi:10.1023/a:1018581701193 | es_ES |
dc.description.references | Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 | es_ES |
dc.description.references | Fontaine, N. K., Scott, R. P., Zhou, L., Soares, F. M., Heritage, J. P., & Yoo, S. J. B. (2010). Real-time full-field arbitrary optical waveform measurement. Nature Photonics, 4(4), 248-254. doi:10.1038/nphoton.2010.28 | es_ES |
dc.description.references | Bernasconi, P., Doerr, C., Dragone, C., Cappuzzo, M., Laskowski, E., & Paunescu, A. (2000). Large N x N waveguide grating routers. Journal of Lightwave Technology, 18(7), 985-991. doi:10.1109/50.850744 | es_ES |