- -

Omnidirectional broadband insulating device for flexural waves in thin plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Omnidirectional broadband insulating device for flexural waves in thin plates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Climente Alarcón, Alfonso es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-11-16T10:43:38Z
dc.date.available 2015-11-16T10:43:38Z
dc.date.issued 2013
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/57517
dc.description.abstract This work presents a gradient index device for insulating from vibrations a circular area of a thin plate. The gradient of the refractive index is achieved exploiting the thickness-dependence of the dispersion relation of flexural waves in thin plates. A well-like thickness profile in an annular region of the plate is used to mimic the combination of an attractive and repulsive potentials, focusing waves at its bottom and dissipating them by means of an absorptive layer placed on top. The central area is therefore isolated from vibrations, while they are dissipated at the bottom of the well. Simulations have been done using the multilayer multiple scattering method and the results prove their broadband efficiency and omnidirectional properties. es_ES
dc.description.sponsorship This work has been supported by the U.S. Office of Naval Research under Grant No. N000140910554. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Física es_ES
dc.subject Ondas es_ES
dc.subject Flexural es_ES
dc.subject Absorcion es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Omnidirectional broadband insulating device for flexural waves in thin plates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4839375
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Climente Alarcón, A.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Omnidirectional broadband insulating device for flexural waves in thin plates. Journal of Applied Physics. 114(21):214903-214912. https://doi.org/10.1063/1.4839375 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4839375 es_ES
dc.description.upvformatpinicio 214903 es_ES
dc.description.upvformatpfin 214912 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 21 es_ES
dc.relation.senia 256780 es_ES
dc.identifier.eissn 1089-7550
dc.contributor.funder Office of Naval Research
dc.description.references Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303 es_ES
dc.description.references McPhedran, R. C., Movchan, A. B., & Movchan, N. V. (2009). Platonic crystals: Bloch bands, neutrality and defects. Mechanics of Materials, 41(4), 356-363. doi:10.1016/j.mechmat.2009.01.005 es_ES
dc.description.references Farhat, M., Guenneau, S., Enoch, S., Movchan, A. B., & Petursson, G. G. (2010). Focussing bending waves via negative refraction in perforated thin plates. Applied Physics Letters, 96(8), 081909. doi:10.1063/1.3327813 es_ES
dc.description.references Pierre, J., Boyko, O., Belliard, L., Vasseur, J. O., & Bonello, B. (2010). Negative refraction of zero order flexural Lamb waves through a two-dimensional phononic crystal. Applied Physics Letters, 97(12), 121919. doi:10.1063/1.3491290 es_ES
dc.description.references Wu, T.-T., Chen, Y.-T., Sun, J.-H., Lin, S.-C. S., & Huang, T. J. (2011). Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Applied Physics Letters, 98(17), 171911. doi:10.1063/1.3583660 es_ES
dc.description.references Farhat, M., Guenneau, S., & Enoch, S. (2010). High directivity and confinement of flexural waves through ultra-refraction in thin perforated plates. EPL (Europhysics Letters), 91(5), 54003. doi:10.1209/0295-5075/91/54003 es_ES
dc.description.references Oudich, M., Li, Y., Assouar, B. M., & Hou, Z. (2010). A sonic band gap based on the locally resonant phononic plates with stubs. New Journal of Physics, 12(8), 083049. doi:10.1088/1367-2630/12/8/083049 es_ES
dc.description.references Xiao, Y., Wen, J., & Wen, X. (2012). Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401. doi:10.1088/0022-3727/45/19/195401 es_ES
dc.description.references Torrent, D., Mayou, D., & Sánchez-Dehesa, J. (2013). Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Physical Review B, 87(11). doi:10.1103/physrevb.87.115143 es_ES
dc.description.references Farhat, M., Guenneau, S., Enoch, S., & Movchan, A. B. (2009). Cloaking bending waves propagating in thin elastic plates. Physical Review B, 79(3). doi:10.1103/physrevb.79.033102 es_ES
dc.description.references Farhat, M., Guenneau, S., & Enoch, S. (2009). Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103(2). doi:10.1103/physrevlett.103.024301 es_ES
dc.description.references Stenger, N., Wilhelm, M., & Wegener, M. (2012). Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108(1). doi:10.1103/physrevlett.108.014301 es_ES
dc.description.references Bramhavar, S., Prada, C., Maznev, A. A., Every, A. G., Norris, T. B., & Murray, T. W. (2011). Negative refraction and focusing of elastic Lamb waves at an interface. Physical Review B, 83(1). doi:10.1103/physrevb.83.014106 es_ES
dc.description.references Krylov, V. V., & Tilman, F. J. B. S. (2004). Acoustic ‘black holes’ for flexural waves as effective vibration dampers. Journal of Sound and Vibration, 274(3-5), 605-619. doi:10.1016/j.jsv.2003.05.010 es_ES
dc.description.references Krylov, V. V., & Winward, R. E. T. B. (2007). Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 300(1-2), 43-49. doi:10.1016/j.jsv.2006.07.035 es_ES
dc.description.references O’Boy, D. J., Krylov, V. V., & Kralovic, V. (2010). Damping of flexural vibrations in rectangular plates using the acoustic black hole effect. Journal of Sound and Vibration, 329(22), 4672-4688. doi:10.1016/j.jsv.2010.05.019 es_ES
dc.description.references Georgiev, V. B., Cuenca, J., Gautier, F., Simon, L., & Krylov, V. V. (2011). Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect. Journal of Sound and Vibration, 330(11), 2497-2508. doi:10.1016/j.jsv.2010.12.001 es_ES
dc.description.references D. Ross, E. E. Ungar, and E. Kerwin, in Proceedings of Structural Damping, Section 3, edited by J. E. Ruzicka (1959), pp. 49–87. es_ES
dc.description.references O’Boy, D. J., & Krylov, V. V. (2011). Damping of flexural vibrations in circular plates with tapered central holes. Journal of Sound and Vibration, 330(10), 2220-2236. doi:10.1016/j.jsv.2010.11.017 es_ES
dc.description.references Bowyer, E. P., O’Boy, D. J., Krylov, V. V., & Horner, J. L. (2012). Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile. Applied Acoustics, 73(5), 514-523. doi:10.1016/j.apacoust.2011.12.010 es_ES
dc.description.references Bowyer, E. P., O’Boy, D. J., Krylov, V. V., & Gautier, F. (2013). Experimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile. Applied Acoustics, 74(4), 553-560. doi:10.1016/j.apacoust.2012.10.004 es_ES
dc.description.references V. Krylov, in Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), edited by P. Sas, D. Moens, and S. Jonckheer (2012), pp. 933–944. es_ES
dc.description.references Narimanov, E. E., & Kildishev, A. V. (2009). Optical black hole: Broadband omnidirectional light absorber. Applied Physics Letters, 95(4), 041106. doi:10.1063/1.3184594 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2012). Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100(14), 144103. doi:10.1063/1.3701611 es_ES
dc.description.references Cai, L.-W., & Sánchez-Dehesa, J. (2008). Acoustical scattering by radially stratified scatterers. The Journal of the Acoustical Society of America, 124(5), 2715-2726. doi:10.1121/1.2967825 es_ES
dc.description.references Norris, A. N., & Vemula, C. (1995). Scattering of flexural waves on thin plates. Journal of Sound and Vibration, 181(1), 115-125. doi:10.1006/jsvi.1995.0129 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem