- -

A new forward-scatter visibility sensor based on a universal frequency-to-digital converter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new forward-scatter visibility sensor based on a universal frequency-to-digital converter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrales Guadarrama, Raymundo es_ES
dc.contributor.author Mocholí Salcedo, Antonio es_ES
dc.contributor.author Rodríguez Rodríguez, M.E. es_ES
dc.contributor.author Barrales Guadarrame, Víctor Rogelio es_ES
dc.contributor.author Vázquez Cerón, Ernesto Rodrigo es_ES
dc.date.accessioned 2015-11-17T08:15:48Z
dc.date.available 2015-11-17T08:15:48Z
dc.date.issued 2013
dc.identifier.issn 1073-9149
dc.identifier.uri http://hdl.handle.net/10251/57569
dc.description.abstract Traffic delays attributable to weather conditions may cause an increase in fuel consumption and then an increase in CO2 emissions to the environment. Visibility reduction in roads due to dense fog is a main cause of traffic accidents and possible environmental pollution, hence the importance of deploying fog warning systems. In this article, we present a forward-scatter visibility sensor that uses a quasi-digital photodetector and a universal frequency-to-digital converter instead of a conventional analog-to-digital converter as data acquisition system. This feature has allowed the design of a low-cost, robust, and simple sensor-to-microcontroller interface as demanded by Intelligent Transportation Systems (ITS) applications. An optical system to limit light interference is proposed. The visibilimeter was calibrated from a self-calibrated transmissometer using the same frequency-to-digital technique. This new instrument is capable of a 41 662.5m visibility range detection and to transmit the information wirelessly to a 100m distance. es_ES
dc.description.sponsorship The authors would like to thank the Universidad Autonoma Metropolitana-Azcapotzalco and the Universidad Politecnica de Valencia for their support. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis (Routledge): STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof Instrumentation Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Energy saving es_ES
dc.subject Frequency-to-digital conversión es_ES
dc.subject Traffic control es_ES
dc.subject Visibility es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A new forward-scatter visibility sensor based on a universal frequency-to-digital converter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/10739149.2013.780250
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Barrales Guadarrama, R.; Mocholí Salcedo, A.; Rodríguez Rodríguez, M.; Barrales Guadarrame, VR.; Vázquez Cerón, ER. (2013). A new forward-scatter visibility sensor based on a universal frequency-to-digital converter. Instrumentation Science and Technology. 41:445-462. doi:10.1080/10739149.2013.780250 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/10739149.2013.780250 es_ES
dc.description.upvformatpinicio 445 es_ES
dc.description.upvformatpfin 462 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.relation.senia 253579 es_ES
dc.identifier.eissn 1525-6030
dc.contributor.funder Universidad Autónoma Metropolitana, México
dc.contributor.funder Universitat Politècnica de València
dc.description.references News Section, p. 8, (April-March 2009), ITS International Electronic Magazine [Online]. Available: www.itsinternational.com es_ES
dc.description.references Bandivadekar , A. ; Bodek , K. ; Cheah , L. ; Evans , C. ; Groode , T. ; Heywood , J. ; Kasseris , E. ; Kromer , M. ; Weiss , M. On the Road in 2035: Reducing Transportation's Petroleum Consumption and GHG Emissions. Report No. LFEE 2008–05 RP, MIT Laboratory for Energy and the Environment, Cambridge, Massachusetts, 2008. es_ES
dc.description.references Schrank , D. ; Lomax , T. ; Turner , S. TTI's Urban Mobility Report 2010 [Online]. Avalaible: http://tti.tamu.edu/publications/catalog/record/?id=36580. es_ES
dc.description.references Bradley , J. T. ; Kraus , K. ; Townshend , T. Federal Citing Criteria for Automated Surface Weather Observations. 7th Symp. On Meteorological Observations and Instrumentation, New Orleans, LA, 1991, 207–210. es_ES
dc.description.references Winstanley, J. V., & Adams, M. J. (1975). Point Visibility Meter: a forward scatter instrument for the measurement of aerosol extinction coefficient. Applied Optics, 14(9), 2151. doi:10.1364/ao.14.002151 es_ES
dc.description.references Horner, J. L. (1976). Analog visibility computer. Applied Optics, 15(4), 999. doi:10.1364/ao.15.000999 es_ES
dc.description.references Twomey, S., & Howell, H. B. (1965). The Relative Merit of White and Monochromatic Light for the Determination of Visibility by Backscattering Measurements. Applied Optics, 4(4), 501. doi:10.1364/ao.4.000501 es_ES
dc.description.references Vogt, H. (1968). Visibility Measurement Using Backscattered Light. Journal of the Atmospheric Sciences, 25(5), 912-918. doi:10.1175/1520-0469(1968)025<0912:vmubl>2.0.co;2 es_ES
dc.description.references Tjugum, S. A., Vaagen, J. S., Jakobsen, T., & Hamre, B. (2005). Use of optical scatter sensors for measurement of visibility. Journal of Environmental Monitoring, 7(6), 608. doi:10.1039/b414327b es_ES
dc.description.references Nebuloni, R. (2005). Empirical relationships between extinction coefficient and visibility in fog. Applied Optics, 44(18), 3795. doi:10.1364/ao.44.003795 es_ES
dc.description.references Kirianaki, N. V., Yurish, S. Y., Shpak, N. O., & Deynega, V. P. (2002). Data Acquisition and Signal Processing for Smart Sensors. doi:10.1002/0470846100 es_ES
dc.description.references Hlupic, N., Butorac, J., & Kresic, M. (2005). Improved Frequency Measurement by Means of DMM and Verification of its Specifications. IEEE Transactions on Instrumentation and Measurement, 54(5), 1957-1963. doi:10.1109/tim.2005.853561 es_ES
dc.description.references Prokin, M. (1991). Double buffered wide-range frequency measurement method for digital tachometers. IEEE Transactions on Instrumentation and Measurement, 40(3), 606-610. doi:10.1109/19.87027 es_ES
dc.description.references Yurish, S. Y., Reverter, F., & Pallàs-Areny, R. (2005). Measurement error analysis and uncertainty reduction for period- and time-interval-to-digital converters based on microcontrollers. Measurement Science and Technology, 16(8), 1660-1666. doi:10.1088/0957-0233/16/8/018 es_ES
dc.description.references Kirianaki, N. V., Yurish, S. Y., & Shpak, N. O. (2001). Methods of dependent count for frequency measurements. Measurement, 29(1), 31-50. doi:10.1016/s0263-2241(00)00026-9 es_ES
dc.description.references Barrales-Guadarrama , R. ; Mocholí-Salcedo , A. ; Vázquez-Cerón , E. R. ; Rodríguez-Rodríguez , M. E. ; Barrales-Guadarrama , V. R. A Technique for Adapting a Quasi-digital Photodetector to a Frequency-to-digital Converter. Proceedings 2012 IEEE Electronics, Robotics and Automotive Mechanics Conference, CERMA 2012, Cuernavaca, Morelos, México, Nov. 20–23, 2012. es_ES
dc.description.references (2011) 700–999 nm Bandpass Interference Filters, [Online]. Available: http://www.edmundoptics.com/products/displayproduct.cfm?productid=3198&PageNum=6&Sort=displayOrder&Order=asc#products. es_ES
dc.description.references AeroGrapher's Mate, Module 05—Basic Meteorology, Ch. 5, Atmospheric Phenomena, Radiation Fog, [Online]. Available: http://www.tpub.com/content/aerographer/14312/css/14312_143.htm. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem