Mostrar el registro sencillo del ítem
dc.contributor.author | Soto, Marcelo A. | es_ES |
dc.contributor.author | Ricchiuti, Amelia Lavinia | es_ES |
dc.contributor.author | Zhang, Liang | es_ES |
dc.contributor.author | Barrera Vilar, David | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.contributor.author | Thevenaz, Luc | es_ES |
dc.date.accessioned | 2015-11-17T10:19:17Z | |
dc.date.available | 2015-11-17T10:19:17Z | |
dc.date.issued | 2014-11-17 | |
dc.identifier.uri | http://hdl.handle.net/10251/57593 | |
dc.description | © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited | es_ES |
dc.description.abstract | A technique to enhance the response and performance of Brillouin distributed fiber sensors is proposed and experimentally validated. The method consists in creating a multi-frequency pump pulse interacting with a matching multi-frequency continuous-wave probe. To avoid nonlinear cross-interaction between spectral lines, the method requires that the distinct pump pulse components and temporal traces reaching the photodetector are subject to wavelength-selective delaying. This way the total pump and probe powers launched into the fiber can be incrementally boosted beyond the thresholds imposed by nonlinear effects. As a consequence of the multiplied pump-probe Brillouin interactions occurring along the fiber, the sensor response can be enhanced in exact proportion to the number of spectral components. The method is experimentally validated in a 50 km-long distributed optical fiber sensor augmented to 3 pump-probe spectral pairs, demonstrating a signal-to-noise ratio enhancement of 4.8 dB. | es_ES |
dc.description.sponsorship | The authors would like to thank Mr. Javier Urricelqui from Universidad Publica de Navarra (Spain) for the valuable discussions and help in relation to the noise characteristics of BOTDA sensors. This work was performed in the framework and with the support of the COST Action TD1001 OFSeSa. M. A. Soto and L. Thevenaz acknowledge the support from the Swiss Commission for Technology and Innovation (Project 13122.1), and from the Swiss State Secretariat for Education, Research and Innovation (SERI) through the project COST C10.0093. UPVLC group acknowledges the support from the Spanish MICINN and the Valencia Government through the projects TEC2011-29120-C05-05 and ACOMP/2013/146, respectively. L. Zhang acknowledges the support from the China Scholarship Council during his stay at EPFL in Switzerland. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America: Open Access Journals | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fiber optics | es_ES |
dc.subject | Fiber optics sensors | es_ES |
dc.subject | Scattering stimulated Brillouin | es_ES |
dc.subject | Nonlinear optics fibers | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.22.028584 | |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//TD1001/EU/Novel and Reliable Optical Fibre Sensor Systems for Future Security and Safety Applications (OFSeSa)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SBFI//COST C10.0093/CH | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CTI//13122.1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F146/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Soto, MA.; Ricchiuti, AL.; Zhang, L.; Barrera Vilar, D.; Sales Maicas, S.; Thevenaz, L. (2014). Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers. Optics Express. 22(23):28584-28595. https://doi.org/10.1364/OE.22.028584 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.22.028584 | es_ES |
dc.description.upvformatpinicio | 28584 | es_ES |
dc.description.upvformatpfin | 28595 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 23 | es_ES |
dc.relation.senia | 278952 | es_ES |
dc.identifier.eissn | 1094-4087 | |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | Staatssekretariat für Bildung, Forschung und Innovation, Suiza | |
dc.description.references | Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M., & Koyamada, Y. (1995). Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology, 13(7), 1296-1302. doi:10.1109/50.400684 | es_ES |
dc.description.references | Soto, M. A., & Thévenaz, L. (2013). Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Optics Express, 21(25), 31347. doi:10.1364/oe.21.031347 | es_ES |
dc.description.references | Foaleng, S. M., & Thévenaz, L. (2011). Impact of Raman scattering and modulation instability on the performances of Brillouin sensors. 21st International Conference on Optical Fiber Sensors. doi:10.1117/12.885105 | es_ES |
dc.description.references | Alem, M., Soto, M. A., & Thévenaz, L. (2014). Modelling the depletion length induced by modulation instability in distributed optical fibre sensors. 23rd International Conference on Optical Fibre Sensors. doi:10.1117/12.2058862 | es_ES |
dc.description.references | Thévenaz, L., Mafang, S. F., & Lin, J. (2013). Effect of pulse depletion in a Brillouin optical time-domain analysis system. Optics Express, 21(12), 14017. doi:10.1364/oe.21.014017 | es_ES |
dc.description.references | Minardo, A., Bernini, R., & Zeni, L. (2009). A Simple Technique for Reducing Pump Depletion in Long-Range Distributed Brillouin Fiber Sensors. IEEE Sensors Journal, 9(6), 633-634. doi:10.1109/jsen.2009.2019372 | es_ES |
dc.description.references | Soto, M. A., Bolognini, G., Di Pasquale, F., & Thévenaz, L. (2010). Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range. Optics Letters, 35(2), 259. doi:10.1364/ol.35.000259 | es_ES |
dc.description.references | Soto, M. A., Bolognini, G., & Di Pasquale, F. (2010). Analysis of pulse modulation format in coded BOTDA sensors. Optics Express, 18(14), 14878. doi:10.1364/oe.18.014878 | es_ES |
dc.description.references | Rodriguez-Barrios, F., Martin-Lopez, S., Carrasco-Sanz, A., Corredera, P., Ania-Castanon, J. D., Thevenaz, L., & Gonzalez-Herraez, M. (2010). Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification. Journal of Lightwave Technology, 28(15), 2162-2172. doi:10.1109/jlt.2010.2051141 | es_ES |
dc.description.references | Martin-Lopez, S., Alcon-Camas, M., Rodriguez, F., Corredera, P., Ania-Castañon, J. D., Thévenaz, L., & Gonzalez-Herraez, M. (2010). Brillouin optical time-domain analysis assisted by second-order Raman amplification. Optics Express, 18(18), 18769. doi:10.1364/oe.18.018769 | es_ES |
dc.description.references | Soto, M. A., Bolognini, G., & Di Pasquale, F. (2011). Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Optics Express, 19(5), 4444. doi:10.1364/oe.19.004444 | es_ES |
dc.description.references | Soto, M. A., Taki, M., Bolognini, G., & Pasquale, F. D. (2012). Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification. IEEE Photonics Technology Letters, 24(20), 1823-1826. doi:10.1109/lpt.2012.2212183 | es_ES |
dc.description.references | Jia, X.-H., Rao, Y.-J., Yuan, C.-X., Li, J., Yan, X.-D., Wang, Z.-N., … Peng, F. (2013). Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping. Optics Express, 21(21), 24611. doi:10.1364/oe.21.024611 | es_ES |
dc.description.references | Soto, M. A., Angulo-Vinuesa, X., Martin-Lopez, S., Chin, S.-H., Ania-Castanon, J. D., Corredera, P., … Thevenaz, L. (2014). Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers. Journal of Lightwave Technology, 32(1), 152-162. doi:10.1109/jlt.2013.2292329 | es_ES |
dc.description.references | Soto, M. A., Bolognini, G., & Pasquale, F. D. (2009). Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers. Electronics Letters, 45(21), 1071. doi:10.1049/el.2009.2381 | es_ES |
dc.description.references | Li, C., Wang, F., Lu, Y., & Zhang, X. (2012). SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection. Electronics Letters, 48(18), 1139-1141. doi:10.1049/el.2012.1248 | es_ES |
dc.description.references | Voskoboinik, A., Wang, J., Shamee, B., Nuccio, S. R., Zhang, L., Chitgarha, M., … Tur, M. (2011). SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation. Journal of Lightwave Technology, 29(11), 1729-1735. doi:10.1109/jlt.2011.2145411 | es_ES |
dc.description.references | Voskoboinik, A., Yilmaz, O. F., Willner, A. W., & Tur, M. (2011). Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Optics Express, 19(26), B842. doi:10.1364/oe.19.00b842 | es_ES |
dc.description.references | Chaube, P., Colpitts, B. G., Jagannathan, D., & Brown, A. W. (2008). Distributed Fiber-Optic Sensor for Dynamic Strain Measurement. IEEE Sensors Journal, 8(7), 1067-1072. doi:10.1109/jsen.2008.926107 | es_ES |
dc.description.references | Nikles, M., Thevenaz, L., & Robert, P. A. (1997). Brillouin gain spectrum characterization in single-mode optical fibers. Journal of Lightwave Technology, 15(10), 1842-1851. doi:10.1109/50.633570 | es_ES |
dc.description.references | Jacobs, I. (1995). Dependence of optical amplifier noise figure on relative-intensity-noise. Journal of Lightwave Technology, 13(7), 1461-1465. doi:10.1109/50.400712 | es_ES |
dc.description.references | Bolognini, G., Soto, M. A., & Di Pasquale, F. (2009). Fiber-Optic Distributed Sensor Based on Hybrid Raman and Brillouin Scattering Employing Multiwavelength Fabry–PÉrot Lasers. IEEE Photonics Technology Letters, 21(20), 1523-1525. doi:10.1109/lpt.2009.2028899 | es_ES |