- -

Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Soto, Marcelo A. es_ES
dc.contributor.author Ricchiuti, Amelia Lavinia es_ES
dc.contributor.author Zhang, Liang es_ES
dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Thevenaz, Luc es_ES
dc.date.accessioned 2015-11-17T10:19:17Z
dc.date.available 2015-11-17T10:19:17Z
dc.date.issued 2014-11-17
dc.identifier.uri http://hdl.handle.net/10251/57593
dc.description © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited es_ES
dc.description.abstract A technique to enhance the response and performance of Brillouin distributed fiber sensors is proposed and experimentally validated. The method consists in creating a multi-frequency pump pulse interacting with a matching multi-frequency continuous-wave probe. To avoid nonlinear cross-interaction between spectral lines, the method requires that the distinct pump pulse components and temporal traces reaching the photodetector are subject to wavelength-selective delaying. This way the total pump and probe powers launched into the fiber can be incrementally boosted beyond the thresholds imposed by nonlinear effects. As a consequence of the multiplied pump-probe Brillouin interactions occurring along the fiber, the sensor response can be enhanced in exact proportion to the number of spectral components. The method is experimentally validated in a 50 km-long distributed optical fiber sensor augmented to 3 pump-probe spectral pairs, demonstrating a signal-to-noise ratio enhancement of 4.8 dB. es_ES
dc.description.sponsorship The authors would like to thank Mr. Javier Urricelqui from Universidad Publica de Navarra (Spain) for the valuable discussions and help in relation to the noise characteristics of BOTDA sensors. This work was performed in the framework and with the support of the COST Action TD1001 OFSeSa. M. A. Soto and L. Thevenaz acknowledge the support from the Swiss Commission for Technology and Innovation (Project 13122.1), and from the Swiss State Secretariat for Education, Research and Innovation (SERI) through the project COST C10.0093. UPVLC group acknowledges the support from the Spanish MICINN and the Valencia Government through the projects TEC2011-29120-C05-05 and ACOMP/2013/146, respectively. L. Zhang acknowledges the support from the China Scholarship Council during his stay at EPFL in Switzerland. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America: Open Access Journals es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fiber optics es_ES
dc.subject Fiber optics sensors es_ES
dc.subject Scattering stimulated Brillouin es_ES
dc.subject Nonlinear optics fibers es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.22.028584
dc.relation.projectID info:eu-repo/grantAgreement/COST//TD1001/EU/Novel and Reliable Optical Fibre Sensor Systems for Future Security and Safety Applications (OFSeSa)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SBFI//COST C10.0093/CH es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CTI//13122.1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F146/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Soto, MA.; Ricchiuti, AL.; Zhang, L.; Barrera Vilar, D.; Sales Maicas, S.; Thevenaz, L. (2014). Time and frequency pump-probe multiplexing to enhance the signal response of Brillouin optical time-domain analyzers. Optics Express. 22(23):28584-28595. https://doi.org/10.1364/OE.22.028584 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.22.028584 es_ES
dc.description.upvformatpinicio 28584 es_ES
dc.description.upvformatpfin 28595 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 23 es_ES
dc.relation.senia 278952 es_ES
dc.identifier.eissn 1094-4087
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder Staatssekretariat für Bildung, Forschung und Innovation, Suiza
dc.description.references Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M., & Koyamada, Y. (1995). Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology, 13(7), 1296-1302. doi:10.1109/50.400684 es_ES
dc.description.references Soto, M. A., & Thévenaz, L. (2013). Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Optics Express, 21(25), 31347. doi:10.1364/oe.21.031347 es_ES
dc.description.references Foaleng, S. M., & Thévenaz, L. (2011). Impact of Raman scattering and modulation instability on the performances of Brillouin sensors. 21st International Conference on Optical Fiber Sensors. doi:10.1117/12.885105 es_ES
dc.description.references Alem, M., Soto, M. A., & Thévenaz, L. (2014). Modelling the depletion length induced by modulation instability in distributed optical fibre sensors. 23rd International Conference on Optical Fibre Sensors. doi:10.1117/12.2058862 es_ES
dc.description.references Thévenaz, L., Mafang, S. F., & Lin, J. (2013). Effect of pulse depletion in a Brillouin optical time-domain analysis system. Optics Express, 21(12), 14017. doi:10.1364/oe.21.014017 es_ES
dc.description.references Minardo, A., Bernini, R., & Zeni, L. (2009). A Simple Technique for Reducing Pump Depletion in Long-Range Distributed Brillouin Fiber Sensors. IEEE Sensors Journal, 9(6), 633-634. doi:10.1109/jsen.2009.2019372 es_ES
dc.description.references Soto, M. A., Bolognini, G., Di Pasquale, F., & Thévenaz, L. (2010). Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range. Optics Letters, 35(2), 259. doi:10.1364/ol.35.000259 es_ES
dc.description.references Soto, M. A., Bolognini, G., & Di Pasquale, F. (2010). Analysis of pulse modulation format in coded BOTDA sensors. Optics Express, 18(14), 14878. doi:10.1364/oe.18.014878 es_ES
dc.description.references Rodriguez-Barrios, F., Martin-Lopez, S., Carrasco-Sanz, A., Corredera, P., Ania-Castanon, J. D., Thevenaz, L., & Gonzalez-Herraez, M. (2010). Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification. Journal of Lightwave Technology, 28(15), 2162-2172. doi:10.1109/jlt.2010.2051141 es_ES
dc.description.references Martin-Lopez, S., Alcon-Camas, M., Rodriguez, F., Corredera, P., Ania-Castañon, J. D., Thévenaz, L., & Gonzalez-Herraez, M. (2010). Brillouin optical time-domain analysis assisted by second-order Raman amplification. Optics Express, 18(18), 18769. doi:10.1364/oe.18.018769 es_ES
dc.description.references Soto, M. A., Bolognini, G., & Di Pasquale, F. (2011). Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Optics Express, 19(5), 4444. doi:10.1364/oe.19.004444 es_ES
dc.description.references Soto, M. A., Taki, M., Bolognini, G., & Pasquale, F. D. (2012). Simplex-Coded BOTDA Sensor Over 120-km SMF With 1-m Spatial Resolution Assisted by Optimized Bidirectional Raman Amplification. IEEE Photonics Technology Letters, 24(20), 1823-1826. doi:10.1109/lpt.2012.2212183 es_ES
dc.description.references Jia, X.-H., Rao, Y.-J., Yuan, C.-X., Li, J., Yan, X.-D., Wang, Z.-N., … Peng, F. (2013). Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping. Optics Express, 21(21), 24611. doi:10.1364/oe.21.024611 es_ES
dc.description.references Soto, M. A., Angulo-Vinuesa, X., Martin-Lopez, S., Chin, S.-H., Ania-Castanon, J. D., Corredera, P., … Thevenaz, L. (2014). Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers. Journal of Lightwave Technology, 32(1), 152-162. doi:10.1109/jlt.2013.2292329 es_ES
dc.description.references Soto, M. A., Bolognini, G., & Pasquale, F. D. (2009). Distributed optical fibre sensors based on spontaneous Brillouin scattering employing multimode Fabry-Pérot lasers. Electronics Letters, 45(21), 1071. doi:10.1049/el.2009.2381 es_ES
dc.description.references Li, C., Wang, F., Lu, Y., & Zhang, X. (2012). SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection. Electronics Letters, 48(18), 1139-1141. doi:10.1049/el.2012.1248 es_ES
dc.description.references Voskoboinik, A., Wang, J., Shamee, B., Nuccio, S. R., Zhang, L., Chitgarha, M., … Tur, M. (2011). SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation. Journal of Lightwave Technology, 29(11), 1729-1735. doi:10.1109/jlt.2011.2145411 es_ES
dc.description.references Voskoboinik, A., Yilmaz, O. F., Willner, A. W., & Tur, M. (2011). Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Optics Express, 19(26), B842. doi:10.1364/oe.19.00b842 es_ES
dc.description.references Chaube, P., Colpitts, B. G., Jagannathan, D., & Brown, A. W. (2008). Distributed Fiber-Optic Sensor for Dynamic Strain Measurement. IEEE Sensors Journal, 8(7), 1067-1072. doi:10.1109/jsen.2008.926107 es_ES
dc.description.references Nikles, M., Thevenaz, L., & Robert, P. A. (1997). Brillouin gain spectrum characterization in single-mode optical fibers. Journal of Lightwave Technology, 15(10), 1842-1851. doi:10.1109/50.633570 es_ES
dc.description.references Jacobs, I. (1995). Dependence of optical amplifier noise figure on relative-intensity-noise. Journal of Lightwave Technology, 13(7), 1461-1465. doi:10.1109/50.400712 es_ES
dc.description.references Bolognini, G., Soto, M. A., & Di Pasquale, F. (2009). Fiber-Optic Distributed Sensor Based on Hybrid Raman and Brillouin Scattering Employing Multiwavelength Fabry–PÉrot Lasers. IEEE Photonics Technology Letters, 21(20), 1523-1525. doi:10.1109/lpt.2009.2028899 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem