- -

CO2-Fixation on Aliphatic alpha ,omega-Diamines to Form Cyclic Ureas, Catalyzed by Ceria Nanoparticles that were Obtained by Templating with Alginate

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

CO2-Fixation on Aliphatic alpha ,omega-Diamines to Form Cyclic Ureas, Catalyzed by Ceria Nanoparticles that were Obtained by Templating with Alginate

Show simple item record

Files in this item

dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Aguado, Eric es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2015-11-18T12:17:19Z
dc.date.issued 2013-04
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/57681
dc.description.abstract Ceria nanoparticles (average particle size: 8nm) have been obtained by the calcination of alginate aerogel beads that were precipitated from aqueous solutions of (NH4)2Ce(NO3)6. These nanoparticles were considerably more active as a catalyst for CO2-insertion into aliphatic ,-diamines than the analogous commercial CeO2 with larger particle size (40nm). CeO2 that was obtained by templating with the natural alginate biopolymer afforded the cyclic urea of ethylenediamine in EtOH solvent at 160 degrees C in 37% yield. This yield is remarkable for a process that involves CO2 as a feedstock. Other ,-diamines, such as diethylenetriamine, N,N-dimethylethylenediamine, N-(2-aminoethyl)acetamide, and 1,4-diaminobutane, also formed their corresponding cyclic ureas in 436% yield. The catalyst lost activity upon reuse, thereby leading to severe deactivation that was only partially recovered by washing with aqueous acidic solutions. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Innovation (CTQ2009-11583) is gratefully acknowledged. A. P. thanks the Spanish National Research Council for a JAE DOC Research Associate contract. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject carbon dioxide fixation es_ES
dc.subject cycloaddition es_ES
dc.subject diamines es_ES
dc.subject nanoparticles es_ES
dc.subject template synthesis es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title CO2-Fixation on Aliphatic alpha ,omega-Diamines to Form Cyclic Ureas, Catalyzed by Ceria Nanoparticles that were Obtained by Templating with Alginate es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201200329
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Primo Arnau, AM.; Aguado, E.; García Gómez, H. (2013). CO2-Fixation on Aliphatic alpha ,omega-Diamines to Form Cyclic Ureas, Catalyzed by Ceria Nanoparticles that were Obtained by Templating with Alginate. ChemCatChem. 5(4):1020-1023. https://doi.org/10.1002/cctc.201200329 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cctc.201200329 es_ES
dc.description.upvformatpinicio 1020 es_ES
dc.description.upvformatpfin 1023 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 229682 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269(5224), 676-679. doi:10.1126/science.269.5224.676 es_ES
dc.description.references Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., … Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437-471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 es_ES
dc.description.references Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., … Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. doi:10.1038/20859 es_ES
dc.description.references Aresta, M., & Dibenedetto, A. (2007). Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, (28), 2975. doi:10.1039/b700658f es_ES
dc.description.references Hatti-Kaul, R., Törnvall, U., Gustafsson, L., & Börjesson, P. (2007). Industrial biotechnology for the production of bio-based chemicals – a cradle-to-grave perspective. Trends in Biotechnology, 25(3), 119-124. doi:10.1016/j.tibtech.2007.01.001 es_ES
dc.description.references Liang, G.-B., Qian, X., Feng, D., Biftu, T., Eiermann, G., He, H., … Weber, A. E. (2007). Optimization of 1,4-diazepan-2-one containing dipeptidyl peptidase IV inhibitors for the treatment of type 2 diabetes. Bioorganic & Medicinal Chemistry Letters, 17(7), 1903-1907. doi:10.1016/j.bmcl.2007.01.039 es_ES
dc.description.references Peretto, I., Forlani, R., Fossati, C., Giardina, G. A. M., Giardini, A., Guala, M., … Imbimbo, B. P. (2007). Discovery of Diaryl Imidazolidin-2-one Derivatives, a Novel Class of Muscarinic M3 Selective Antagonists (Part 1). Journal of Medicinal Chemistry, 50(7), 1571-1583. doi:10.1021/jm061159a es_ES
dc.description.references Juárez, R., Concepción, P., Corma, A., & García, H. (2010). Ceria nanoparticles as heterogeneous catalyst for CO2 fixation by ω-aminoalcohols. Chemical Communications, 46(23), 4181. doi:10.1039/c001955k es_ES
dc.description.references Juárez, R., Corma, A., & García, H. (2009). Gold nanoparticles promote the catalytic activity of ceria for the transalkylation of propylene carbonate to dimethyl carbonate. Green Chemistry, 11(7), 949. doi:10.1039/b902850a es_ES
dc.description.references Honda, M., Sonehara, S., Yasuda, H., Nakagawa, Y., & Tomishige, K. (2011). Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chemistry, 13(12), 3406. doi:10.1039/c1gc15646b es_ES
dc.description.references Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498 es_ES
dc.description.references Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie, 117(26), 4134-4137. doi:10.1002/ange.200500382 es_ES
dc.description.references Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie International Edition, 44(26), 4066-4069. doi:10.1002/anie.200500382 es_ES
dc.description.references Saha, S., Pal, A., Kundu, S., Basu, S., & Pal, T. (2010). Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir, 26(4), 2885-2893. doi:10.1021/la902950x es_ES
dc.description.references Schnepp, Z. A. C., Wimbush, S. C., Mann, S., & Hall, S. R. (2008). Structural Evolution of Superconductor Nanowires in Biopolymer Gels. Advanced Materials, 20(9), 1782-1786. doi:10.1002/adma.200702679 es_ES
dc.description.references Sreeram, K. J., Indumathy, R., Rajaram, A., Nair, B. U., & Ramasami, T. (2006). Template synthesis of highly crystalline and monodisperse iron oxide pigments of nanosize. Materials Research Bulletin, 41(10), 1875-1881. doi:10.1016/j.materresbull.2006.03.017 es_ES
dc.description.references Nidhin, M., Indumathy, R., Sreeram, K. J., & Nair, B. U. (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 31(1), 93-96. doi:10.1007/s12034-008-0016-2 es_ES
dc.description.references Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie, 121(32), 6030-6034. doi:10.1002/ange.200901309 es_ES
dc.description.references Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie International Edition, 48(32), 5916-5920. doi:10.1002/anie.200901309 es_ES
dc.description.references El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740 es_ES
dc.description.references Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337 es_ES
dc.description.references Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137a es_ES
dc.description.references Mulvaney, J. F., & Evans, R. L. (1948). Synthesis of Ethylene Ures (Imidazoliodine-2). Industrial & Engineering Chemistry, 40(3), 393-397. doi:10.1021/ie50459a007 es_ES


This item appears in the following Collection(s)

Show simple item record