- -

MOFs as Multifunctional catalysts: Synthesis of secondary arylamines, quinolines, pyrroles and arylpyrrolidines over bifunctional MIL-101

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MOFs as Multifunctional catalysts: Synthesis of secondary arylamines, quinolines, pyrroles and arylpyrrolidines over bifunctional MIL-101

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Cirujano, Francisco es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Llabrés i Xamena, Francesc Xavier es_ES
dc.date.accessioned 2015-11-18T12:59:19Z
dc.date.issued 2013-02
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/57687
dc.description.abstract Bifunctional MIL-101 MOFs containing Lewis acid Cr3+ sites and Pd or Pt hydrogenation/reduction centers, either as isolated metal complexes or in the form of encapsulated metal nanoparticles, have shown to be highly active catalysts for the one-pot nitroarene reduction and reductive amination of carbonyl compounds. This preparation procedure has been successfully applied to the synthesis of secondary arylamines, quinolines, pyrrols, and 3-arylpyrrolidines. In all the cases, the MOFs have shown superior performances with respect to commercially available Pd and Pt metal catalysts under the same conditions. es_ES
dc.description.sponsorship Financial support by Ministerio de Educacion y Ciencia e Innovacion (Project MAT2011-29020-C02-01, and CSD2009-00050 PROGRAMA CONSOLIDER. INGENIO 2009), Ministerio de Economia y Competitividad (Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa, Project SEV 2012 0267) and the CSIC (Proyectos Intramurales Especiales 201080I020) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Amination es_ES
dc.subject Carbonyl compounds es_ES
dc.subject Heterocycle synthesis es_ES
dc.subject Hydrogenation es_ES
dc.subject Metalorganic frameworks es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title MOFs as Multifunctional catalysts: Synthesis of secondary arylamines, quinolines, pyrroles and arylpyrrolidines over bifunctional MIL-101 es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201200878
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//201080I020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation García Cirujano, F.; Leyva Perez, A.; Corma Canós, A.; Llabrés I Xamena, FX. (2013). MOFs as Multifunctional catalysts: Synthesis of secondary arylamines, quinolines, pyrroles and arylpyrrolidines over bifunctional MIL-101. ChemCatChem. 5(2):538-549. https://doi.org/10.1002/cctc.201200878 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cctc.201200878 es_ES
dc.description.upvformatpinicio 538 es_ES
dc.description.upvformatpfin 549 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 244275 es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383 es_ES
dc.description.references Corma, A., Serna, P., Concepción, P., & Calvino, J. J. (2008). Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 130(27), 8748-8753. doi:10.1021/ja800959g es_ES
dc.description.references Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401 es_ES
dc.description.references Yamane, Y., Liu, X., Hamasaki, A., Ishida, T., Haruta, M., Yokoyama, T., & Tokunaga, M. (2009). One-Pot Synthesis of Indoles and Aniline Derivatives from Nitroarenes under Hydrogenation Condition with Supported Gold Nanoparticles. Organic Letters, 11(22), 5162-5165. doi:10.1021/ol902061j es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492 es_ES
dc.description.references Santos, L. L., Serna, P., & Corma, A. (2009). Chemoselective Synthesis of Substituted Imines, Secondary Amines, and β-Amino Carbonyl Compounds from Nitroaromatics through Cascade Reactions on Gold Catalysts. Chemistry - A European Journal, 15(33), 8196-8203. doi:10.1002/chem.200900884 es_ES
dc.description.references Zheng, Y., Ma, K., Li, H., Li, J., He, J., Sun, X., … Ma, J. (2008). One Pot Synthesis of Imines from Aromatic Nitro Compounds with a Novel Ni/SiO2 Magnetic Catalyst. Catalysis Letters, 128(3-4), 465-474. doi:10.1007/s10562-008-9774-0 es_ES
dc.description.references Dell’Anna, M. M., Mastrorilli, P., Rizzuti, A., & Leonelli, C. (2011). One-pot synthesis of aniline derivatives from nitroarenes under mild conditions promoted by a recyclable polymer-supported palladium catalyst. Applied Catalysis A: General, 401(1-2), 134-140. doi:10.1016/j.apcata.2011.05.010 es_ES
dc.description.references Byun, E., Hong, B., De Castro, K. A., Lim, M., & Rhee, H. (2007). One-Pot Reductive Mono-N-alkylation of Aniline and Nitroarene Derivatives Using Aldehydes. The Journal of Organic Chemistry, 72(25), 9815-9817. doi:10.1021/jo701503q es_ES
dc.description.references Hu, L., Cao, X., Ge, D., Hong, H., Guo, Z., Chen, L., … Gu, H. (2011). Ultrathin Platinum Nanowire Catalysts for Direct CN Coupling of Carbonyls with Aromatic Nitro Compounds under 1 Bar of Hydrogen. Chemistry - A European Journal, 17(50), 14283-14287. doi:10.1002/chem.201100818 es_ES
dc.description.references Xiang, Y., Meng, Q., Li, X., & Wang, J. (2010). In situ hydrogen from aqueous-methanol for nitroarene reduction and imine formation over an Au–Pd/Al2O3 catalyst. Chemical Communications, 46(32), 5918. doi:10.1039/c0cc00531b es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f es_ES
dc.description.references Wang, C., Zheng, M., & Lin, W. (2011). Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks: Critical Issues. The Journal of Physical Chemistry Letters, 2(14), 1701-1709. doi:10.1021/jz200492d es_ES
dc.description.references Cirujano, F. G., Llabrés i Xamena, F. X., & Corma, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions, 41(14), 4249. doi:10.1039/c2dt12480g es_ES
dc.description.references Arnanz, A., Pintado-Sierra, M., Corma, A., Iglesias, M., & Sánchez, F. (2012). Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF-Cu(BTC)-[Pd] Catalyst for One-Pot Heteroannulation of Acetylenic Compounds. Advanced Synthesis & Catalysis, 354(7), 1347-1355. doi:10.1002/adsc.201100503 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 es_ES
dc.description.references Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e es_ES
dc.description.references Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d es_ES
dc.description.references Wu, P., Wang, J., Li, Y., He, C., Xie, Z., & Duan, C. (2011). Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide-Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 21(14), 2788-2794. doi:10.1002/adfm.201100115 es_ES
dc.description.references Zhang, X., Llabrés i Xamena, F. X., & Corma, A. (2009). Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 265(2), 155-160. doi:10.1016/j.jcat.2009.04.021 es_ES
dc.description.references Aijaz, A., Karkamkar, A., Choi, Y. J., Tsumori, N., Rönnebro, E., Autrey, T., … Xu, Q. (2012). Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal–Organic Framework: A Double Solvents Approach. Journal of the American Chemical Society, 134(34), 13926-13929. doi:10.1021/ja3043905 es_ES
dc.description.references Hermannsdörfer, J., Friedrich, M., Miyajima, N., Albuquerque, R. Q., Kümmel, S., & Kempe, R. (2012). Ni/Pd@MIL-101: Synergetische Katalyse mit kavitätenkonformen Ni/Pd-Nanopartikeln. Angewandte Chemie, 124(46), 11640-11644. doi:10.1002/ange.201205078 es_ES
dc.description.references Hermannsdörfer, J., Friedrich, M., Miyajima, N., Albuquerque, R. Q., Kümmel, S., & Kempe, R. (2012). Ni/Pd@MIL-101: Synergistic Catalysis with Cavity-Conform Ni/Pd Nanoparticles. Angewandte Chemie International Edition, 51(46), 11473-11477. doi:10.1002/anie.201205078 es_ES
dc.description.references Huang, Y., Liu, S., Lin, Z., Li, W., Li, X., & Cao, R. (2012). Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous metal–organic frameworks and catalytic for dehalogenation of aryl chlorides. Journal of Catalysis, 292, 111-117. doi:10.1016/j.jcat.2012.05.003 es_ES
dc.description.references Liu, H., Li, Y., Jiang, H., Vargas, C., & Luque, R. (2012). Significant promoting effects of Lewis acidity on Au–Pd systems in the selective oxidation of aromatic hydrocarbons. Chemical Communications, 48(67), 8431. doi:10.1039/c2cc32024j es_ES
dc.description.references Maksimchuk, N. V., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chemical Communications, 48(54), 6812. doi:10.1039/c2cc31877f es_ES
dc.description.references Ramos-Fernandez, E. V., Pieters, C., van der Linden, B., Juan-Alcañiz, J., Serra-Crespo, P., Verhoeven, M. W. G. M., … Kapteijn, F. (2012). Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance. Journal of Catalysis, 289, 42-52. doi:10.1016/j.jcat.2012.01.013 es_ES
dc.description.references Saedi, Z., Tangestaninejad, S., Moghadam, M., Mirkhani, V., & Mohammadpoor-Baltork, I. (2012). MIL-101 metal–organic framework: A highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. Catalysis Communications, 17, 18-22. doi:10.1016/j.catcom.2011.10.005 es_ES
dc.description.references Sun, Z., Li, G., Liu, L., & Liu, H. (2012). Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol. Catalysis Communications, 27, 200-205. doi:10.1016/j.catcom.2012.07.017 es_ES
dc.description.references Domine, M. E., Hernández-Soto, M. C., & Pérez, Y. (2011). Development of metal nanoparticles supported materials as efficient catalysts for reductive amination reactions using high-throughput experimentation. Catalysis Today, 159(1), 2-11. doi:10.1016/j.cattod.2010.08.011 es_ES
dc.description.references Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159 es_ES
dc.description.references Srivani, A., Prasad, P. S. S., & Lingaiah, N. (2012). Reductive Amination of Carbonyl Compounds over Silica Supported Palladium Exchanged Molybdophosphoric Acid Catalysts. Catalysis Letters, 142(3), 389-396. doi:10.1007/s10562-012-0778-4 es_ES
dc.description.references Iosif, F., Coman, S., Pârvulescu, V., Grange, P., Delsarte, S., Vos, D. D., & Jacobs, P. (2004). Ir-Beta zeolite as a heterogeneous catalyst for the one-pot transformation of citronellal to menthol. Chem. Commun., (11), 1292-1293. doi:10.1039/b403692a es_ES
dc.description.references Grimsdale, A. C., Leok Chan, K., Martin, R. E., Jokisz, P. G., & Holmes, A. B. (2009). Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chemical Reviews, 109(3), 897-1091. doi:10.1021/cr000013v es_ES
dc.description.references Heinze, J., Frontana-Uribe, B. A., & Ludwigs, S. (2010). Electrochemistry of Conducting Polymers—Persistent Models and New Concepts†. Chemical Reviews, 110(8), 4724-4771. doi:10.1021/cr900226k es_ES
dc.description.references Knorr, L. (1884). Synthese von Furfuranderivaten aus dem Diacetbernsteinsäureester. Berichte der deutschen chemischen Gesellschaft, 17(2), 2863-2870. doi:10.1002/cber.188401702254 es_ES
dc.description.references Paal, C. (1884). Ueber die Derivate des Acetophenonacetessigesters und des Acetonylacetessigesters. Berichte der deutschen chemischen Gesellschaft, 17(2), 2756-2767. doi:10.1002/cber.188401702228 es_ES
dc.description.references Curini, M., Montanari, F., Rosati, O., Lioy, E., & Margarita, R. (2003). Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Letters, 44(20), 3923-3925. doi:10.1016/s0040-4039(03)00810-4 es_ES
dc.description.references Yadav, J. ., Reddy, B. V. ., Eeshwaraiah, B., & Gupta, M. K. (2004). Bi(OTf) 3 /[bmim]BF 4 as novel and reusable catalytic system for the synthesis of furan, pyrrole and thiophene derivatives. Tetrahedron Letters, 45(30), 5873-5876. doi:10.1016/j.tetlet.2004.05.152 es_ES
dc.description.references Azizi, N., Khajeh-Amiri, A., Ghafuri, H., Bolourtchian, M., & Saidi, M. (2009). Iron-Catalyzed Inexpensive and Practical Synthesis of N-Substituted Pyrroles in Water. Synlett, 2009(14), 2245-2248. doi:10.1055/s-0029-1217799 es_ES
dc.description.references Veisi, H. (2010). Silica sulfuric acid (SSA) as a solid acid heterogeneous catalyst for one-pot synthesis of substituted pyrroles under solvent-free conditions at room temperature. Tetrahedron Letters, 51(16), 2109-2114. doi:10.1016/j.tetlet.2010.02.052 es_ES
dc.description.references Aghapoor, K., Ebadi-Nia, L., Mohsenzadeh, F., Mohebi Morad, M., Balavar, Y., & Darabi, H. R. (2012). Silica-supported bismuth(III) chloride as a new recyclable heterogeneous catalyst for the Paal–Knorr pyrrole synthesis. Journal of Organometallic Chemistry, 708-709, 25-30. doi:10.1016/j.jorganchem.2012.02.008 es_ES
dc.description.references Amarnath, V., Anthony, D. C., Amarnath, K., Valentine, W. M., Wetterau, L. A., & Graham, D. G. (1991). Intermediates in the Paal-Knorr synthesis of pyrroles. The Journal of Organic Chemistry, 56(24), 6924-6931. doi:10.1021/jo00024a040 es_ES
dc.description.references Y.-J. Wu H. He J. J. Bronson 2006 es_ES
dc.description.references C. Bissantz T. Hoffmann P. Jablonski H. Knust M. Nettekoven R. Ratni X. Wu 2011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem