- -

Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mikami, Yusuke es_ES
dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2015-11-18T14:00:15Z
dc.date.issued 2013-07
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/57696
dc.description.abstract A series of heterogeneous catalysts incorporating N-hydroxyphthalimide (NHPI) and contg. transition-metal ion as promoter (Fe3+ or Co2+) on a support such as Fe(BTC) (BTC=1,3,5-benzenetricarboxylate), zeolites Y and Beta, mesoporous Al-MCM-41 aluminosilicate, and nonporous silica have been prepd. and tested for the aerobic oxidn. of cyclooctane. It was found that NHPI/Fe(BTC) as catalyst exhibits the best performance in the series with the highest selectivity to the -ol/-one mixt. at identical conversions. These results have been interpreted as being due to the appropriate combination between reaction cavity dimensions and confinement of the autoxidn. chain reaction. The catalytic activity for cyclohexane using NHPI/Fe(BTC) under similar reaction conditions is also reported. es_ES
dc.description.sponsorship Financial support by the Spanish MINECOM (CTQ-2009-11586) is gratefully acknowledged. ADM thanks the University Grants Commission (UGC), New Delhi, for the award of Faculty Recharge Programme. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject cycloalkanes es_ES
dc.subject metal-organic frameworks es_ES
dc.subject oxidation es_ES
dc.subject zeolites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201200854
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Mikami, Y.; Dhakshinamoorthy, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2013). Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes. ChemCatChem. 5(7):1964-1970. https://doi.org/10.1002/cctc.201200854 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cctc.201200854 es_ES
dc.description.upvformatpinicio 1964 es_ES
dc.description.upvformatpfin 1970 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 259372 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.description.references Davies, H. M. L., & Manning, J. R. (2008). Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature, 451(7177), 417-424. doi:10.1038/nature06485 es_ES
dc.description.references Arndtsen, B. A., Bergman, R. G., Mobley, T. A., & Peterson, T. H. (1995). Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Accounts of Chemical Research, 28(3), 154-162. doi:10.1021/ar00051a009 es_ES
dc.description.references Arends, I. W. C. E., & Sheldon, R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 212(1-2), 175-187. doi:10.1016/s0926-860x(00)00855-3 es_ES
dc.description.references Zhao, R., Wang, Y., Guo, Y., Guo, Y., Liu, X., Zhang, Z., … Lu, G. (2006). A novel Ce/AlPO-5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chemistry, 8(5), 459. doi:10.1039/b517656e es_ES
dc.description.references Li, J., Li, X., Shi, Y., Mao, D., & Lu, G. (2010). Selective Oxidation of Cyclohexane by Oxygen in a Solvent-Free System over Lanthanide-Containing AlPO-5. Catalysis Letters, 137(3-4), 180-189. doi:10.1007/s10562-010-0352-x es_ES
dc.description.references Turrà, N., Acuña, A. B., Schimmöller, B., Mayr-Schmölzer, B., Mania, P., & Hermans, I. (2011). Aerobic Oxidation of Cyclohexane Catalyzed by Flame-Made Nano-Structured Co/SiO2 Materials. Topics in Catalysis, 54(10-12), 737-745. doi:10.1007/s11244-011-9678-x es_ES
dc.description.references Singh, A. P., Torita, N., Shylesh, S., Iwasa, N., & Arai, M. (2009). Catalytic Aerobic Oxidation of Cyclohexane and Ethyl Benzene Over Chromium-Containing Mesoporous Organosilicas. Catalysis Letters, 132(3-4), 492-499. doi:10.1007/s10562-009-0121-x es_ES
dc.description.references Liu, Y., Tsunoyama, H., Akita, T., Xie, S., & Tsukuda, T. (2010). Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime. ACS Catalysis, 1(1), 2-6. doi:10.1021/cs100043j es_ES
dc.description.references Połtowicz, J., Pamin, K., Tabor, E., Haber, J., Adamski, A., & Sojka, Z. (2006). Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane. Applied Catalysis A: General, 299, 235-242. doi:10.1016/j.apcata.2005.10.034 es_ES
dc.description.references Xie, J., Wang, Y., & Wei, Y. (2009). Immobilization of manganese tetraphenylporphyrin on Au/SiO2 as new catalyst for cyclohexane oxidation with air. Catalysis Communications, 11(2), 110-113. doi:10.1016/j.catcom.2009.09.006 es_ES
dc.description.references Komiya, N., Naota, T., Oda, Y., & Murahashi, S.-I. (1997). Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether. Journal of Molecular Catalysis A: Chemical, 117(1-3), 21-37. doi:10.1016/s1381-1169(96)00263-4 es_ES
dc.description.references Komiya, N., Naota, T., & Murahashi, S.-I. (1996). Aerobic oxidation of alkanes in the presence of acetaldehyde catalysed by copper-crown ether. Tetrahedron Letters, 37(10), 1633-1636. doi:10.1016/0040-4039(96)00074-3 es_ES
dc.description.references Theyssen, N., & Leitner, W. (2002). Selective oxidation of cyclooctane to cyclootanone with molecular oxygen in the presence of compressed carbon dioxide. Chemical Communications, (5), 410-411. doi:10.1039/b111212k es_ES
dc.description.references Ishii, Y., Iwahama, T., Sakaguchi, S., Nakayama, K., & Nishiyama, Y. (1996). Alkane Oxidation with Molecular Oxygen Using a New Efficient Catalytic System: N-Hydroxyphthalimide (NHPI) Combined with Co(acac)n(n= 2 or 3)†. The Journal of Organic Chemistry, 61(14), 4520-4526. doi:10.1021/jo951970l es_ES
dc.description.references Ishii, Y., Sakaguchi, S., & Iwahama, T. (2001). Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions. Advanced Synthesis & Catalysis, 343(5), 393-427. doi:10.1002/1615-4169(200107)343:5<393::aid-adsc393>3.0.co;2-k es_ES
dc.description.references Sheldon, R. A., & Arends, I. W. C. E. (2004). Organocatalytic Oxidations Mediated by Nitroxyl Radicals. Advanced Synthesis & Catalysis, 346(910), 1051-1071. doi:10.1002/adsc.200404110 es_ES
dc.description.references ISHII, Y., & SAKAGUCHI, S. (2006). Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides. Catalysis Today, 117(1-3), 105-113. doi:10.1016/j.cattod.2006.05.006 es_ES
dc.description.references Sawatari, N., Yokota, T., Sakaguchi, S., & Ishii, Y. (2001). Alkane Oxidation with Air Catalyzed by LipophilicN-Hydroxyphthalimides without Any Solvent. The Journal of Organic Chemistry, 66(23), 7889-7891. doi:10.1021/jo0158276 es_ES
dc.description.references Minisci, F., Punta, C., & Recupero, F. (2006). Mechanisms of the aerobic oxidations catalyzed by N-hydroxyderivatives. Journal of Molecular Catalysis A: Chemical, 251(1-2), 129-149. doi:10.1016/j.molcata.2006.02.011 es_ES
dc.description.references Rajabi, F., Clark, J. H., Karimi, B., & Macquarrie, D. J. (2005). The selective aerobic oxidation of methylaromatics to benzaldehydes using a unique combination of two heterogeneous catalysts. Organic & Biomolecular Chemistry, 3(5), 725. doi:10.1039/b419322a es_ES
dc.description.references Wentzel, B. B., Donners, M. P. ., Alsters, P. L., Feiters, M. C., & Nolte, R. J. . (2000). N -Hydroxyphthalimide/Cobalt(II) Catalyzed Low Temperature Benzylic Oxidation Using Molecular Oxygen. Tetrahedron, 56(39), 7797-7803. doi:10.1016/s0040-4020(00)00679-7 es_ES
dc.description.references Corma, A., & García, H. (2003). Lewis Acids:  From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chemical Reviews, 103(11), 4307-4366. doi:10.1021/cr030680z es_ES
dc.description.references HERMANS, I., VANDEUN, J., HOUTHOOFD, K., PEETERS, J., & JACOBS, P. (2007). Silica-immobilized N-hydroxyphthalimide: An efficient heterogeneous autoxidation catalyst. Journal of Catalysis, 251(1), 204-212. doi:10.1016/j.jcat.2007.06.025 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175 es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g es_ES
dc.description.references ChemCatChem 2012 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001 es_ES
dc.description.references Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references LLABRESIXAMENA, F., CASANOVA, O., GALIASSOTAILLEUR, R., GARCIA, H., & CORMA, A. (2008). Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220-227. doi:10.1016/j.jcat.2008.02.011 es_ES
dc.description.references Maksimchuk, N. V., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chemical Communications, 48(54), 6812. doi:10.1039/c2cc31877f es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem