Mostrar el registro sencillo del ítem
dc.contributor.author | Mikami, Yusuke | es_ES |
dc.contributor.author | Dhakshinamoorthy, Amarajothi | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2015-11-18T14:00:15Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 1867-3880 | |
dc.identifier.uri | http://hdl.handle.net/10251/57696 | |
dc.description.abstract | A series of heterogeneous catalysts incorporating N-hydroxyphthalimide (NHPI) and contg. transition-metal ion as promoter (Fe3+ or Co2+) on a support such as Fe(BTC) (BTC=1,3,5-benzenetricarboxylate), zeolites Y and Beta, mesoporous Al-MCM-41 aluminosilicate, and nonporous silica have been prepd. and tested for the aerobic oxidn. of cyclooctane. It was found that NHPI/Fe(BTC) as catalyst exhibits the best performance in the series with the highest selectivity to the -ol/-one mixt. at identical conversions. These results have been interpreted as being due to the appropriate combination between reaction cavity dimensions and confinement of the autoxidn. chain reaction. The catalytic activity for cyclohexane using NHPI/Fe(BTC) under similar reaction conditions is also reported. | es_ES |
dc.description.sponsorship | Financial support by the Spanish MINECOM (CTQ-2009-11586) is gratefully acknowledged. ADM thanks the University Grants Commission (UGC), New Delhi, for the award of Faculty Recharge Programme. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | cycloalkanes | es_ES |
dc.subject | metal-organic frameworks | es_ES |
dc.subject | oxidation | es_ES |
dc.subject | zeolites | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cctc.201200854 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Mikami, Y.; Dhakshinamoorthy, A.; Alvaro Rodríguez, MM.; García Gómez, H. (2013). Superior Performance of Fe(BTC) With Respect to Other Metal-Containing Solids in the N-Hydroxyphthalimide-Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes. ChemCatChem. 5(7):1964-1970. https://doi.org/10.1002/cctc.201200854 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cctc.201200854 | es_ES |
dc.description.upvformatpinicio | 1964 | es_ES |
dc.description.upvformatpfin | 1970 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 259372 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | University Grants Commission, India | es_ES |
dc.description.references | Davies, H. M. L., & Manning, J. R. (2008). Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature, 451(7177), 417-424. doi:10.1038/nature06485 | es_ES |
dc.description.references | Arndtsen, B. A., Bergman, R. G., Mobley, T. A., & Peterson, T. H. (1995). Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Accounts of Chemical Research, 28(3), 154-162. doi:10.1021/ar00051a009 | es_ES |
dc.description.references | Arends, I. W. C. E., & Sheldon, R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 212(1-2), 175-187. doi:10.1016/s0926-860x(00)00855-3 | es_ES |
dc.description.references | Zhao, R., Wang, Y., Guo, Y., Guo, Y., Liu, X., Zhang, Z., … Lu, G. (2006). A novel Ce/AlPO-5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chemistry, 8(5), 459. doi:10.1039/b517656e | es_ES |
dc.description.references | Li, J., Li, X., Shi, Y., Mao, D., & Lu, G. (2010). Selective Oxidation of Cyclohexane by Oxygen in a Solvent-Free System over Lanthanide-Containing AlPO-5. Catalysis Letters, 137(3-4), 180-189. doi:10.1007/s10562-010-0352-x | es_ES |
dc.description.references | Turrà, N., Acuña, A. B., Schimmöller, B., Mayr-Schmölzer, B., Mania, P., & Hermans, I. (2011). Aerobic Oxidation of Cyclohexane Catalyzed by Flame-Made Nano-Structured Co/SiO2 Materials. Topics in Catalysis, 54(10-12), 737-745. doi:10.1007/s11244-011-9678-x | es_ES |
dc.description.references | Singh, A. P., Torita, N., Shylesh, S., Iwasa, N., & Arai, M. (2009). Catalytic Aerobic Oxidation of Cyclohexane and Ethyl Benzene Over Chromium-Containing Mesoporous Organosilicas. Catalysis Letters, 132(3-4), 492-499. doi:10.1007/s10562-009-0121-x | es_ES |
dc.description.references | Liu, Y., Tsunoyama, H., Akita, T., Xie, S., & Tsukuda, T. (2010). Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime. ACS Catalysis, 1(1), 2-6. doi:10.1021/cs100043j | es_ES |
dc.description.references | Połtowicz, J., Pamin, K., Tabor, E., Haber, J., Adamski, A., & Sojka, Z. (2006). Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane. Applied Catalysis A: General, 299, 235-242. doi:10.1016/j.apcata.2005.10.034 | es_ES |
dc.description.references | Xie, J., Wang, Y., & Wei, Y. (2009). Immobilization of manganese tetraphenylporphyrin on Au/SiO2 as new catalyst for cyclohexane oxidation with air. Catalysis Communications, 11(2), 110-113. doi:10.1016/j.catcom.2009.09.006 | es_ES |
dc.description.references | Komiya, N., Naota, T., Oda, Y., & Murahashi, S.-I. (1997). Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether. Journal of Molecular Catalysis A: Chemical, 117(1-3), 21-37. doi:10.1016/s1381-1169(96)00263-4 | es_ES |
dc.description.references | Komiya, N., Naota, T., & Murahashi, S.-I. (1996). Aerobic oxidation of alkanes in the presence of acetaldehyde catalysed by copper-crown ether. Tetrahedron Letters, 37(10), 1633-1636. doi:10.1016/0040-4039(96)00074-3 | es_ES |
dc.description.references | Theyssen, N., & Leitner, W. (2002). Selective oxidation of cyclooctane to cyclootanone with molecular oxygen in the presence of compressed carbon dioxide. Chemical Communications, (5), 410-411. doi:10.1039/b111212k | es_ES |
dc.description.references | Ishii, Y., Iwahama, T., Sakaguchi, S., Nakayama, K., & Nishiyama, Y. (1996). Alkane Oxidation with Molecular Oxygen Using a New Efficient Catalytic System: N-Hydroxyphthalimide (NHPI) Combined with Co(acac)n(n= 2 or 3)†. The Journal of Organic Chemistry, 61(14), 4520-4526. doi:10.1021/jo951970l | es_ES |
dc.description.references | Ishii, Y., Sakaguchi, S., & Iwahama, T. (2001). Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions. Advanced Synthesis & Catalysis, 343(5), 393-427. doi:10.1002/1615-4169(200107)343:5<393::aid-adsc393>3.0.co;2-k | es_ES |
dc.description.references | Sheldon, R. A., & Arends, I. W. C. E. (2004). Organocatalytic Oxidations Mediated by Nitroxyl Radicals. Advanced Synthesis & Catalysis, 346(910), 1051-1071. doi:10.1002/adsc.200404110 | es_ES |
dc.description.references | ISHII, Y., & SAKAGUCHI, S. (2006). Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides. Catalysis Today, 117(1-3), 105-113. doi:10.1016/j.cattod.2006.05.006 | es_ES |
dc.description.references | Sawatari, N., Yokota, T., Sakaguchi, S., & Ishii, Y. (2001). Alkane Oxidation with Air Catalyzed by LipophilicN-Hydroxyphthalimides without Any Solvent. The Journal of Organic Chemistry, 66(23), 7889-7891. doi:10.1021/jo0158276 | es_ES |
dc.description.references | Minisci, F., Punta, C., & Recupero, F. (2006). Mechanisms of the aerobic oxidations catalyzed by N-hydroxyderivatives. Journal of Molecular Catalysis A: Chemical, 251(1-2), 129-149. doi:10.1016/j.molcata.2006.02.011 | es_ES |
dc.description.references | Rajabi, F., Clark, J. H., Karimi, B., & Macquarrie, D. J. (2005). The selective aerobic oxidation of methylaromatics to benzaldehydes using a unique combination of two heterogeneous catalysts. Organic & Biomolecular Chemistry, 3(5), 725. doi:10.1039/b419322a | es_ES |
dc.description.references | Wentzel, B. B., Donners, M. P. ., Alsters, P. L., Feiters, M. C., & Nolte, R. J. . (2000). N -Hydroxyphthalimide/Cobalt(II) Catalyzed Low Temperature Benzylic Oxidation Using Molecular Oxygen. Tetrahedron, 56(39), 7797-7803. doi:10.1016/s0040-4020(00)00679-7 | es_ES |
dc.description.references | Corma, A., & García, H. (2003). Lewis Acids: From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chemical Reviews, 103(11), 4307-4366. doi:10.1021/cr030680z | es_ES |
dc.description.references | HERMANS, I., VANDEUN, J., HOUTHOOFD, K., PEETERS, J., & JACOBS, P. (2007). Silica-immobilized N-hydroxyphthalimide: An efficient heterogeneous autoxidation catalyst. Journal of Catalysis, 251(1), 204-212. doi:10.1016/j.jcat.2007.06.025 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g | es_ES |
dc.description.references | ChemCatChem 2012 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001 | es_ES |
dc.description.references | Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x | es_ES |
dc.description.references | Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n | es_ES |
dc.description.references | LLABRESIXAMENA, F., CASANOVA, O., GALIASSOTAILLEUR, R., GARCIA, H., & CORMA, A. (2008). Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220-227. doi:10.1016/j.jcat.2008.02.011 | es_ES |
dc.description.references | Maksimchuk, N. V., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2012). Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chemical Communications, 48(54), 6812. doi:10.1039/c2cc31877f | es_ES |