Mostrar el registro sencillo del ítem
dc.contributor.author | Barrera Vilar, David | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.date.accessioned | 2015-11-19T08:16:44Z | |
dc.date.available | 2015-11-19T08:16:44Z | |
dc.date.issued | 2013-09 | |
dc.identifier.uri | http://hdl.handle.net/10251/57714 | |
dc.description.abstract | Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. | es_ES |
dc.description.sponsorship | The authors wish to acknowledge the financial support of the Infraestructura FEDER UPVOV08-3E-008, FEDER UPVOV10-3E-492, the Spanish MCINN through the project TEC2011-29120-C05-05 and the Valencia Government through the Ayuda Complementaria ACOMP/2013/146. The authors also acknowledge the collaboration of Alvarez from Fibercore for providing the high birefringence optical fiber. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Optical fibre sensor | es_ES |
dc.subject | High-temperature | es_ES |
dc.subject | Regenerated Fiber Bragg Gratting (RFBG) | es_ES |
dc.subject | Interrogation | es_ES |
dc.subject | Modal interferometer | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | A high-temperature fiber sensor using a low cost interrogation scheme | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s130911653 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F146/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Barrera Vilar, D.; Sales Maicas, S. (2013). A high-temperature fiber sensor using a low cost interrogation scheme. Sensors. 13(9):11653-11659. https://doi.org/10.3390/s130911653 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s130911653 | es_ES |
dc.description.upvformatpinicio | 11653 | es_ES |
dc.description.upvformatpfin | 11659 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 249274 | es_ES |
dc.identifier.eissn | 1424-8220 | |
dc.identifier.pmid | 24008282 | en_EN |
dc.identifier.pmcid | PMC3821370 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Erdogan, T., Mizrahi, V., Lemaire, P. J., & Monroe, D. (1994). Decay of ultraviolet‐induced fiber Bragg gratings. Journal of Applied Physics, 76(1), 73-80. doi:10.1063/1.357062 | es_ES |
dc.description.references | Butov, O. V., Dianov, E. M., & Golant, K. M. (2006). Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures. Measurement Science and Technology, 17(5), 975-979. doi:10.1088/0957-0233/17/5/s06 | es_ES |
dc.description.references | Grobnic, D., Mihailov, S. J., Smelser, C. W., & Ding, H. (2004). Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications. IEEE Photonics Technology Letters, 16(11), 2505-2507. doi:10.1109/lpt.2004.834920 | es_ES |
dc.description.references | Canning, J., Stevenson, M., Bandyopadhyay, S., & Cook, K. (2008). Extreme Silica Optical Fibre Gratings. Sensors, 8(10), 6448-6452. doi:10.3390/s8106448 | es_ES |
dc.description.references | Cook, K., Shao, L.-Y., & Canning, J. (2012). Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre. Optical Materials Express, 2(12), 1733. doi:10.1364/ome.2.001733 | es_ES |
dc.description.references | Lindner, E., Canning, J., Chojetzki, C., Brückner, S., Becker, M., Rothhardt, M., & Bartelt, H. (2011). Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration. Applied Optics, 50(17), 2519. doi:10.1364/ao.50.002519 | es_ES |
dc.description.references | Trpkovski, S., Kitcher, D. J., Baxter, G. W., Collins, S. F., & Wade, S. A. (2005). High-temperature-resistant chemical composition Bragg gratings in Er^3+-doped optical fiber. Optics Letters, 30(6), 607. doi:10.1364/ol.30.000607 | es_ES |
dc.description.references | Wang, T., Shao, L.-Y., Canning, J., & Cook, K. (2013). Regeneration of fiber Bragg gratings under strain. Applied Optics, 52(10), 2080. doi:10.1364/ao.52.002080 | es_ES |
dc.description.references | Barrera, D., Finazzi, V., Villatoro, J., Sales, S., & Pruneri, V. (2012). Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications. IEEE Sensors Journal, 12(1), 107-112. doi:10.1109/jsen.2011.2122254 | es_ES |
dc.description.references | Fernandez-Ruiz, M. R., Carballar, A., & Azana, J. (2013). Design of Ultrafast All-Optical Signal Processing Devices Based on Fiber Bragg Gratings in Transmission. Journal of Lightwave Technology, 31(10), 1593-1600. doi:10.1109/jlt.2013.2254467 | es_ES |
dc.description.references | Barrera, D., Villatoro, J., Finazzi, V. P., Cárdenas-Sevilla, G. A., Minkovich, V. P., Sales, S., & Pruneri, V. (2010). Low-Loss Photonic Crystal Fiber Interferometers for Sensor Networks. Journal of Lightwave Technology, 28(24), 3542-3547. doi:10.1109/jlt.2010.2090861 | es_ES |