- -

A high-temperature fiber sensor using a low cost interrogation scheme

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A high-temperature fiber sensor using a low cost interrogation scheme

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.date.accessioned 2015-11-19T08:16:44Z
dc.date.available 2015-11-19T08:16:44Z
dc.date.issued 2013-09
dc.identifier.uri http://hdl.handle.net/10251/57714
dc.description.abstract Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. es_ES
dc.description.sponsorship The authors wish to acknowledge the financial support of the Infraestructura FEDER UPVOV08-3E-008, FEDER UPVOV10-3E-492, the Spanish MCINN through the project TEC2011-29120-C05-05 and the Valencia Government through the Ayuda Complementaria ACOMP/2013/146. The authors also acknowledge the collaboration of Alvarez from Fibercore for providing the high birefringence optical fiber. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optical fibre sensor es_ES
dc.subject High-temperature es_ES
dc.subject Regenerated Fiber Bragg Gratting (RFBG) es_ES
dc.subject Interrogation es_ES
dc.subject Modal interferometer es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A high-temperature fiber sensor using a low cost interrogation scheme es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s130911653
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F146/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Barrera Vilar, D.; Sales Maicas, S. (2013). A high-temperature fiber sensor using a low cost interrogation scheme. Sensors. 13(9):11653-11659. https://doi.org/10.3390/s130911653 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s130911653 es_ES
dc.description.upvformatpinicio 11653 es_ES
dc.description.upvformatpfin 11659 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 249274 es_ES
dc.identifier.eissn 1424-8220
dc.identifier.pmid 24008282 en_EN
dc.identifier.pmcid PMC3821370 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Erdogan, T., Mizrahi, V., Lemaire, P. J., & Monroe, D. (1994). Decay of ultraviolet‐induced fiber Bragg gratings. Journal of Applied Physics, 76(1), 73-80. doi:10.1063/1.357062 es_ES
dc.description.references Butov, O. V., Dianov, E. M., & Golant, K. M. (2006). Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures. Measurement Science and Technology, 17(5), 975-979. doi:10.1088/0957-0233/17/5/s06 es_ES
dc.description.references Grobnic, D., Mihailov, S. J., Smelser, C. W., & Ding, H. (2004). Sapphire Fiber Bragg Grating Sensor Made Using Femtosecond Laser Radiation for Ultrahigh Temperature Applications. IEEE Photonics Technology Letters, 16(11), 2505-2507. doi:10.1109/lpt.2004.834920 es_ES
dc.description.references Canning, J., Stevenson, M., Bandyopadhyay, S., & Cook, K. (2008). Extreme Silica Optical Fibre Gratings. Sensors, 8(10), 6448-6452. doi:10.3390/s8106448 es_ES
dc.description.references Cook, K., Shao, L.-Y., & Canning, J. (2012). Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre. Optical Materials Express, 2(12), 1733. doi:10.1364/ome.2.001733 es_ES
dc.description.references Lindner, E., Canning, J., Chojetzki, C., Brückner, S., Becker, M., Rothhardt, M., & Bartelt, H. (2011). Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration. Applied Optics, 50(17), 2519. doi:10.1364/ao.50.002519 es_ES
dc.description.references Trpkovski, S., Kitcher, D. J., Baxter, G. W., Collins, S. F., & Wade, S. A. (2005). High-temperature-resistant chemical composition Bragg gratings in Er^3+-doped optical fiber. Optics Letters, 30(6), 607. doi:10.1364/ol.30.000607 es_ES
dc.description.references Wang, T., Shao, L.-Y., Canning, J., & Cook, K. (2013). Regeneration of fiber Bragg gratings under strain. Applied Optics, 52(10), 2080. doi:10.1364/ao.52.002080 es_ES
dc.description.references Barrera, D., Finazzi, V., Villatoro, J., Sales, S., & Pruneri, V. (2012). Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications. IEEE Sensors Journal, 12(1), 107-112. doi:10.1109/jsen.2011.2122254 es_ES
dc.description.references Fernandez-Ruiz, M. R., Carballar, A., & Azana, J. (2013). Design of Ultrafast All-Optical Signal Processing Devices Based on Fiber Bragg Gratings in Transmission. Journal of Lightwave Technology, 31(10), 1593-1600. doi:10.1109/jlt.2013.2254467 es_ES
dc.description.references Barrera, D., Villatoro, J., Finazzi, V. P., Cárdenas-Sevilla, G. A., Minkovich, V. P., Sales, S., & Pruneri, V. (2010). Low-Loss Photonic Crystal Fiber Interferometers for Sensor Networks. Journal of Lightwave Technology, 28(24), 3542-3547. doi:10.1109/jlt.2010.2090861 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem