Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez Muñiz, Gemma María | es_ES |
dc.contributor.author | Gomis Vicens, Juan | es_ES |
dc.contributor.author | Arques Sanz, Antonio | es_ES |
dc.contributor.author | Amat Payá, Ana María | es_ES |
dc.contributor.author | Marín García, Mª Luisa | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.date.accessioned | 2015-11-23T10:00:23Z | |
dc.date.available | 2015-11-23T10:00:23Z | |
dc.date.issued | 2014-11 | |
dc.identifier.issn | 0031-8655 | |
dc.identifier.uri | http://hdl.handle.net/10251/57876 | |
dc.description | This is the accepted version of the following article: Rodriguez-Muñiz, G. M., Gomis, J., Arques, A., Amat, A. M., Marin, M. L. and Miranda, M. A. (2014), Hydroxyl Radical as an Unlikely Key Intermediate in the Photodegradation of Emerging Pollutants. Photochemistry and Photobiology, 90: 1467–1469, which has been published in final form at http://dx.doi.org/10.1111/php.12325. | es_ES |
dc.description.abstract | In this work, a kinetic model, in combination with time-resolved experiments, is applied to assess the involvement of OH in the photodegradation of emerging pollutants (EPs) by means of advanced oxidation processes. In contrast with the general assumption, quenching of the short-lived OH in the real waters by the (highly diluted) EPs must be very inefficient, so removal of EPs cannot purely rely on the generation and reaction of OH. This suggests that more complex pathways have to be considered to explain the photodegradation of EPs actually achieved under the employed oxidative conditions, possibly involving other reactive species with longer lifetimes or chain degradation processes. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Government (Projects CTQ2012-38754-C03-03 and CTQ2012-38754-C03-02) and Technical University of Valencia (Predoctoral fellowship for J. Gomis). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Photochemistry and Photobiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Laser Flash-Photolysis | es_ES |
dc.subject | Photochemical fate | es_ES |
dc.subject | Organic-Matter | es_ES |
dc.subject | Oxidation | es_ES |
dc.subject | Water | es_ES |
dc.subject | Acid | es_ES |
dc.subject | Pharmaceuticals | es_ES |
dc.subject | Degradation | es_ES |
dc.subject | Environment | es_ES |
dc.subject | Reactivity | es_ES |
dc.subject.classification | INGENIERIA TEXTIL Y PAPELERA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Hydroxyl radical as an unlikely key intermediate in the photodegradation of emerging pollutants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/php.12325 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-38754-C03-02/ES/DESARROLLO DE NUEVAS ESTRATEGIAS BASADAS EN LA INTEGRACION DE PROCESOS FOTOQUIMICOS SOLARES CON OTRAS TECNICAS AVANZADAS PARA EL TRATAMIENTO DE AGUAS RESIDUALES COMPLEJAS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-38754-C03-03/ES/CTQ2012-38754-C03-03/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Rodríguez Muñiz, GM.; Gomis Vicens, J.; Arqués Sanz, A.; Amat Payá, AM.; Marín García, ML.; Miranda Alonso, MÁ. (2014). Hydroxyl radical as an unlikely key intermediate in the photodegradation of emerging pollutants. Photochemistry and Photobiology. 90(6):1467-1469. doi:10.1111/php.12325 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/php.12325 | es_ES |
dc.description.upvformatpinicio | 1467 | es_ES |
dc.description.upvformatpfin | 1469 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 90 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 279831 | es_ES |
dc.identifier.eissn | 1751-1097 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Farré, M. la, Pérez, S., Kantiani, L., & Barceló, D. (2008). Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends in Analytical Chemistry, 27(11), 991-1007. doi:10.1016/j.trac.2008.09.010 | es_ES |
dc.description.references | Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018 | es_ES |
dc.description.references | Marin, M. L., Santos-Juanes, L., Arques, A., Amat, A. M., & Miranda, M. A. (2011). Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds. Chemical Reviews, 112(3), 1710-1750. doi:10.1021/cr2000543 | es_ES |
dc.description.references | Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2010). Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399(1), 251-275. doi:10.1007/s00216-010-4300-9 | es_ES |
dc.description.references | SIES, H. (1993). Strategies of antioxidant defense. European Journal of Biochemistry, 215(2), 213-219. doi:10.1111/j.1432-1033.1993.tb18025.x | es_ES |
dc.description.references | Chen, J., Pehkonen, S. O., & Lin, C.-J. (2003). Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Research, 37(10), 2496-2504. doi:10.1016/s0043-1354(03)00039-3 | es_ES |
dc.description.references | Zeng, T., & Arnold, W. A. (2012). Pesticide Photolysis in Prairie Potholes: Probing Photosensitized Processes. Environmental Science & Technology, 47(13), 6735-6745. doi:10.1021/es3030808 | es_ES |
dc.description.references | Wols, B. A., & Hofman-Caris, C. H. M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Research, 46(9), 2815-2827. doi:10.1016/j.watres.2012.03.036 | es_ES |
dc.description.references | Santoke, H., Song, W., Cooper, W. J., & Peake, B. M. (2012). Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid. Journal of Hazardous Materials, 217-218, 382-390. doi:10.1016/j.jhazmat.2012.03.049 | es_ES |
dc.description.references | Xu, H., Cooper, W. J., Jung, J., & Song, W. (2011). Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632-638. doi:10.1016/j.watres.2010.08.024 | es_ES |
dc.description.references | Canonica, S., & Freiburghaus, M. (2001). Electron-Rich Phenols for Probing the Photochemical Reactivity of Freshwaters. Environmental Science & Technology, 35(4), 690-695. doi:10.1021/es0011360 | es_ES |
dc.description.references | Jacobs, L. E., Fimmen, R. L., Chin, Y.-P., Mash, H. E., & Weavers, L. K. (2011). Fulvic acid mediated photolysis of ibuprofen in water. Water Research, 45(15), 4449-4458. doi:10.1016/j.watres.2011.05.041 | es_ES |
dc.description.references | Packer, J. L., Werner, J. J., Latch, D. E., McNeill, K., & Arnold, W. A. (2003). Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Sciences - Research Across Boundaries, 65(4), 342-351. doi:10.1007/s00027-003-0671-8 | es_ES |
dc.description.references | Dong, M. M., & Rosario-Ortiz, F. L. (2012). Photochemical Formation of Hydroxyl Radical from Effluent Organic Matter. Environmental Science & Technology, 46(7), 3788-3794. doi:10.1021/es2043454 | es_ES |
dc.description.references | DeMatteo, M. P., Poole, J. S., Shi, X., Sachdeva, R., Hatcher, P. G., Hadad, C. M., & Platz, M. S. (2005). On the Electrophilicity of Hydroxyl Radical: A Laser Flash Photolysis and Computational Study. Journal of the American Chemical Society, 127(19), 7094-7109. doi:10.1021/ja043692q | es_ES |
dc.description.references | Poole, J. S., Shi, X., Hadad, C. M., & Platz, M. S. (2005). Reaction of Hydroxyl Radical with Aromatic Hydrocarbons in Nonaqueous Solutions: A Laser Flash Photolysis Study in Acetonitrile. The Journal of Physical Chemistry A, 109(11), 2547-2551. doi:10.1021/jp0452150 | es_ES |
dc.description.references | Rodríguez-Muñiz, G. M., Marin, M. L., Lhiaubet-Vallet, V., & Miranda, M. A. (2012). Reactivity of Nucleosides with a Hydroxyl Radical in Non-aqueous Medium. Chemistry - A European Journal, 18(26), 8024-8027. doi:10.1002/chem.201201090 | es_ES |