- -

Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author El-Jallal, Said es_ES
dc.contributor.author Oudich, Mourad es_ES
dc.contributor.author Pennec, Yan es_ES
dc.contributor.author Djafari-Rouhani, Bahram es_ES
dc.contributor.author Laude, Vincent es_ES
dc.contributor.author Beugnot, Jean-Charles es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Escalante Fernández, José María es_ES
dc.contributor.author Makhoute, Abdelkader es_ES
dc.date.accessioned 2015-11-24T07:13:04Z
dc.date.available 2015-11-24T07:13:04Z
dc.date.issued 2013
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/57946
dc.description.abstract [EN] We theoretically investigate phonon-photon interaction in cavities created in a phoxonic crystal slab constituted by a two-dimensional (2D) square array of holes in a silicon membrane. The structure without defects provides 2D band gaps for both electromagnetic and elastic waves.We consider two types of cavities, namely, an L3 cavity (a row of three holes is removed) and a cross-shape cavity, which both possess highly confined phononic and photonic localized modes suitable for enhancing their interaction. In our theoretical study, we take into account two mechanisms that contribute to optomechanical interaction, namely, the photoelastic and the interface motion effects. We show that, depending on the considered pair of photonic and phononic modes, the two mechanisms can have similar or very different magnitudes, and their contributions can be either in or out of phase. We find out that only acoustic modes with a specific symmetry are allowed to couple with photonic cavity modes. The coupling strength is quantified by two different methods. In the first method, we compute a direct estimation of coupling rates by overlap integrals, while in the second one, we analyze the temporal modulation of the resonant photonic frequency by the phonon-induced acoustic vibrational motion during one acoustic period. Interestingly, we obtain high optomechanical interaction, with the coupling rate reaching more than 2.4 MHz for some specific phonon-photon pairs. es_ES
dc.description.sponsorship The authors acknowledge the support of the European Commission Seventh Framework Programs (FP7) under the FET-Open project TAILPHOX N 233883. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Optomechanics es_ES
dc.subject Cavity optomechanics es_ES
dc.subject Phoxonic crystals es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.88.205410
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation El-Jallal, S.; Oudich, M.; Pennec, Y.; Djafari-Rouhani, B.; Laude, V.; Beugnot, J.; Martínez Abietar, AJ.... (2013). Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Physical Review B. 88:205410-205416. https://doi.org/10.1103/PhysRevB.88.205410 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.88.205410 es_ES
dc.description.upvformatpinicio 205410 es_ES
dc.description.upvformatpfin 205416 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.relation.senia 251567 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder European Commission
dc.description.references Yablonovitch, E. (1993). Photonic band-gap structures. Journal of the Optical Society of America B, 10(2), 283. doi:10.1364/josab.10.000283 es_ES
dc.description.references Krauss, T. F., Rue, R. M. D. L., & Brand, S. (1996). Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature, 383(6602), 699-702. doi:10.1038/383699a0 es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229-291. doi:10.1016/j.surfrep.2010.08.002 es_ES
dc.description.references Maldovan, M., & Thomas, E. L. (2006). Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 83(4), 595-600. doi:10.1007/s00340-006-2241-y es_ES
dc.description.references Bria, D., Assouar, M. B., Oudich, M., Pennec, Y., Vasseur, J., & Djafari-Rouhani, B. (2011). Opening of simultaneous photonic and phononic band gap in two-dimensional square lattice periodic structure. Journal of Applied Physics, 109(1), 014507. doi:10.1063/1.3530682 es_ES
dc.description.references Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276 es_ES
dc.description.references Mohammadi, S., Eftekhar, A. A., Khelif, A., & Adibi, A. (2010). Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Optics Express, 18(9), 9164. doi:10.1364/oe.18.009164 es_ES
dc.description.references Pennec, Y., Rouhani, B. D., El Boudouti, E. H., Li, C., El Hassouani, Y., Vasseur, J. O., … Martinez, A. (2010). Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 18(13), 14301. doi:10.1364/oe.18.014301 es_ES
dc.description.references El Hassouani, Y., Li, C., Pennec, Y., El Boudouti, E. H., Larabi, H., Akjouj, A., … Djafari Rouhani, B. (2010). Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Physical Review B, 82(15). doi:10.1103/physrevb.82.155405 es_ES
dc.description.references Laude, V., Beugnot, J.-C., Benchabane, S., Pennec, Y., Djafari-Rouhani, B., Papanikolaou, N., … Martinez, A. (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 19(10), 9690. doi:10.1364/oe.19.009690 es_ES
dc.description.references Safavi-Naeini, A. H., & Painter, O. (2010). Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Optics Express, 18(14), 14926. doi:10.1364/oe.18.014926 es_ES
dc.description.references Safavi-Naeini, A. H., Alegre, T. P. M., Winger, M., & Painter, O. (2010). Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Applied Physics Letters, 97(18), 181106. doi:10.1063/1.3507288 es_ES
dc.description.references Fuhrmann, D. A., Thon, S. M., Kim, H., Bouwmeester, D., Petroff, P. M., Wixforth, A., & Krenner, H. J. (2011). Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature Photonics, 5(10), 605-609. doi:10.1038/nphoton.2011.208 es_ES
dc.description.references Gavartin, E., Braive, R., Sagnes, I., Arcizet, O., Beveratos, A., Kippenberg, T. J., & Robert-Philip, I. (2011). Optomechanical Coupling in a Two-Dimensional Photonic Crystal Defect Cavity. Physical Review Letters, 106(20). doi:10.1103/physrevlett.106.203902 es_ES
dc.description.references Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524 es_ES
dc.description.references Eichenfield, M., Chan, J., Safavi-Naeini, A. H., Vahala, K. J., & Painter, O. (2009). Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals. Optics Express, 17(22), 20078. doi:10.1364/oe.17.020078 es_ES
dc.description.references Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., & Painter, O. (2012). Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101(8), 081115. doi:10.1063/1.4747726 es_ES
dc.description.references Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885 es_ES
dc.description.references Psarobas, I. E., Papanikolaou, N., Stefanou, N., Djafari-Rouhani, B., Bonello, B., & Laude, V. (2010). Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Physical Review B, 82(17). doi:10.1103/physrevb.82.174303 es_ES
dc.description.references Rolland, Q., Oudich, M., El-Jallal, S., Dupont, S., Pennec, Y., Gazalet, J., … Djafari-Rouhani, B. (2012). Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Applied Physics Letters, 101(6), 061109. doi:10.1063/1.4744539 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem