- -

Effect of loss on the dispersion relation of photonic and phononic crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of loss on the dispersion relation of photonic and phononic crystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laude, Vincent es_ES
dc.contributor.author Escalante Fernández, José María es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2015-11-24T07:21:17Z
dc.date.available 2015-11-24T07:21:17Z
dc.date.issued 2013-12
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/57947
dc.description.abstract [EN] A theoretical analysis is made of the transformation of the dispersion relation of waves in artificial crystals under the influence of loss, including the case of photonic and phononic crystals. Considering a general dispersion relation in implicit form, an analytic procedure is derived to obtain the transformed dispersion relation. It is shown that the dispersion relation is generally shifted in the complex (k,ω) plane, with k the wave number and ω the angular frequency. The value of the shift is obtained explicitly as a function of the perturbation of material constants accounting for loss. The method is shown to predict correctly the transformation of the complex band structure k(ω). Several models of the dispersion relation near a symmetry point of the Brillouin zone are analyzed. A lower bound for the group velocity, related to the local shape of the band around symmetry points, is derived for each case es_ES
dc.description.sponsorship Financial support from the European Community's Seventh Framework program (FP7/2007-2013) under Grant Agreement No. 233883 (TAILPHOX) is gratefully acknowledged. V. L. acknowledges the support of the Labex ACTION program (Contract No. ANR-11-LABX-01-01). en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Photonic crystals es_ES
dc.subject Phononic crystals es_ES
dc.subject Propagation losses es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Effect of loss on the dispersion relation of photonic and phononic crystals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.88.224302
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Laude, V.; Escalante Fernández, JM.; Martínez Abietar, AJ. (2013). Effect of loss on the dispersion relation of photonic and phononic crystals. Physical Review B. 88:2243021-2243028. https://doi.org/10.1103/PhysRevB.88.224302 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.88.224302 es_ES
dc.description.upvformatpinicio 2243021 es_ES
dc.description.upvformatpfin 2243028 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.relation.senia 255672 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder European Commission
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229-291. doi:10.1016/j.surfrep.2010.08.002 es_ES
dc.description.references Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885 es_ES
dc.description.references Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276 es_ES
dc.description.references Baba, T. (2008). Slow light in photonic crystals. Nature Photonics, 2(8), 465-473. doi:10.1038/nphoton.2008.146 es_ES
dc.description.references Thévenaz, L. (2008). Slow and fast light in optical fibres. Nature Photonics, 2(8), 474-481. doi:10.1038/nphoton.2008.147 es_ES
dc.description.references Laude, V., Beugnot, J.-C., Benchabane, S., Pennec, Y., Djafari-Rouhani, B., Papanikolaou, N., … Martinez, A. (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 19(10), 9690. doi:10.1364/oe.19.009690 es_ES
dc.description.references Vlasov, Y. A., O’Boyle, M., Hamann, H. F., & McNab, S. J. (2005). Active control of slow light on a chip with photonic crystal waveguides. Nature, 438(7064), 65-69. doi:10.1038/nature04210 es_ES
dc.description.references Hughes, S., Ramunno, L., Young, J. F., & Sipe, J. E. (2005). Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity. Physical Review Letters, 94(3). doi:10.1103/physrevlett.94.033903 es_ES
dc.description.references O’Faolain, L., White, T. P., O’Brien, D., Yuan, X., Settle, M. D., & Krauss, T. F. (2007). Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Optics Express, 15(20), 13129. doi:10.1364/oe.15.013129 es_ES
dc.description.references Pedersen, J. G., Xiao, S., & Mortensen, N. A. (2008). Limits of slow light in photonic crystals. Physical Review B, 78(15). doi:10.1103/physrevb.78.153101 es_ES
dc.description.references Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301 es_ES
dc.description.references Moiseyenko, R. P., & Laude, V. (2011). Material loss influence on the complex band structure and group velocity in phononic crystals. Physical Review B, 83(6). doi:10.1103/physrevb.83.064301 es_ES
dc.description.references Figotin, A., & Vitebskiy, I. (2006). Slow light in photonic crystals. Waves in Random and Complex Media, 16(3), 293-382. doi:10.1080/17455030600836507 es_ES
dc.description.references Thurston, R. N. (1977). Direct Calculation of the Group Velocity. IEEE Transactions on Sonics and Ultrasonics, 24(2), 109-110. doi:10.1109/t-su.1977.30920 es_ES
dc.description.references Hsue, Y.-C., Freeman, A. J., & Gu, B.-Y. (2005). Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Physical Review B, 72(19). doi:10.1103/physrevb.72.195118 es_ES
dc.description.references Stefanou, N., Karathanos, V., & Modinos, A. (1992). Scattering of electromagnetic waves by periodic structures. Journal of Physics: Condensed Matter, 4(36), 7389-7400. doi:10.1088/0953-8984/4/36/013 es_ES
dc.description.references Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 es_ES
dc.description.references Psarobas, I. E., Stefanou, N., & Modinos, A. (2000). Scattering of elastic waves by periodic arrays of spherical bodies. Physical Review B, 62(1), 278-291. doi:10.1103/physrevb.62.278 es_ES
dc.description.references Laude, V., Moiseyenko, R. P., Benchabane, S., & Declercq, N. F. (2011). Bloch wave deafness and modal conversion at a phononic crystal boundary. AIP Advances, 1(4), 041402. doi:10.1063/1.3675828 es_ES
dc.description.references Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2002). Ultrasound Tunneling through 3D Phononic Crystals. Physical Review Letters, 88(10). doi:10.1103/physrevlett.88.104301 es_ES
dc.description.references Davoyan, A. R., Liu, W., Miroshnichenko, A. E., Shadrivov, I. V., Kivshar, Y. S., & Bozhevolnyi, S. I. (2011). Mode transformation in waveguiding plasmonic structures. Photonics and Nanostructures - Fundamentals and Applications, 9(3), 207-212. doi:10.1016/j.photonics.2011.01.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem