Mostrar el registro sencillo del ítem
dc.contributor.author | Laude, Vincent | es_ES |
dc.contributor.author | Escalante Fernández, José María | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.date.accessioned | 2015-11-24T07:21:17Z | |
dc.date.available | 2015-11-24T07:21:17Z | |
dc.date.issued | 2013-12 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.uri | http://hdl.handle.net/10251/57947 | |
dc.description.abstract | [EN] A theoretical analysis is made of the transformation of the dispersion relation of waves in artificial crystals under the influence of loss, including the case of photonic and phononic crystals. Considering a general dispersion relation in implicit form, an analytic procedure is derived to obtain the transformed dispersion relation. It is shown that the dispersion relation is generally shifted in the complex (k,ω) plane, with k the wave number and ω the angular frequency. The value of the shift is obtained explicitly as a function of the perturbation of material constants accounting for loss. The method is shown to predict correctly the transformation of the complex band structure k(ω). Several models of the dispersion relation near a symmetry point of the Brillouin zone are analyzed. A lower bound for the group velocity, related to the local shape of the band around symmetry points, is derived for each case | es_ES |
dc.description.sponsorship | Financial support from the European Community's Seventh Framework program (FP7/2007-2013) under Grant Agreement No. 233883 (TAILPHOX) is gratefully acknowledged. V. L. acknowledges the support of the Labex ACTION program (Contract No. ANR-11-LABX-01-01). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review B | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Photonic crystals | es_ES |
dc.subject | Phononic crystals | es_ES |
dc.subject | Propagation losses | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Effect of loss on the dispersion relation of photonic and phononic crystals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevB.88.224302 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Laude, V.; Escalante Fernández, JM.; Martínez Abietar, AJ. (2013). Effect of loss on the dispersion relation of photonic and phononic crystals. Physical Review B. 88:2243021-2243028. https://doi.org/10.1103/PhysRevB.88.224302 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1103/PhysRevB.88.224302 | es_ES |
dc.description.upvformatpinicio | 2243021 | es_ES |
dc.description.upvformatpfin | 2243028 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 88 | es_ES |
dc.relation.senia | 255672 | es_ES |
dc.identifier.eissn | 1550-235X | |
dc.contributor.funder | European Commission | |
dc.description.references | Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 | es_ES |
dc.description.references | Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229-291. doi:10.1016/j.surfrep.2010.08.002 | es_ES |
dc.description.references | Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885 | es_ES |
dc.description.references | Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276 | es_ES |
dc.description.references | Baba, T. (2008). Slow light in photonic crystals. Nature Photonics, 2(8), 465-473. doi:10.1038/nphoton.2008.146 | es_ES |
dc.description.references | Thévenaz, L. (2008). Slow and fast light in optical fibres. Nature Photonics, 2(8), 474-481. doi:10.1038/nphoton.2008.147 | es_ES |
dc.description.references | Laude, V., Beugnot, J.-C., Benchabane, S., Pennec, Y., Djafari-Rouhani, B., Papanikolaou, N., … Martinez, A. (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 19(10), 9690. doi:10.1364/oe.19.009690 | es_ES |
dc.description.references | Vlasov, Y. A., O’Boyle, M., Hamann, H. F., & McNab, S. J. (2005). Active control of slow light on a chip with photonic crystal waveguides. Nature, 438(7064), 65-69. doi:10.1038/nature04210 | es_ES |
dc.description.references | Hughes, S., Ramunno, L., Young, J. F., & Sipe, J. E. (2005). Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity. Physical Review Letters, 94(3). doi:10.1103/physrevlett.94.033903 | es_ES |
dc.description.references | O’Faolain, L., White, T. P., O’Brien, D., Yuan, X., Settle, M. D., & Krauss, T. F. (2007). Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Optics Express, 15(20), 13129. doi:10.1364/oe.15.013129 | es_ES |
dc.description.references | Pedersen, J. G., Xiao, S., & Mortensen, N. A. (2008). Limits of slow light in photonic crystals. Physical Review B, 78(15). doi:10.1103/physrevb.78.153101 | es_ES |
dc.description.references | Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301 | es_ES |
dc.description.references | Moiseyenko, R. P., & Laude, V. (2011). Material loss influence on the complex band structure and group velocity in phononic crystals. Physical Review B, 83(6). doi:10.1103/physrevb.83.064301 | es_ES |
dc.description.references | Figotin, A., & Vitebskiy, I. (2006). Slow light in photonic crystals. Waves in Random and Complex Media, 16(3), 293-382. doi:10.1080/17455030600836507 | es_ES |
dc.description.references | Thurston, R. N. (1977). Direct Calculation of the Group Velocity. IEEE Transactions on Sonics and Ultrasonics, 24(2), 109-110. doi:10.1109/t-su.1977.30920 | es_ES |
dc.description.references | Hsue, Y.-C., Freeman, A. J., & Gu, B.-Y. (2005). Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Physical Review B, 72(19). doi:10.1103/physrevb.72.195118 | es_ES |
dc.description.references | Stefanou, N., Karathanos, V., & Modinos, A. (1992). Scattering of electromagnetic waves by periodic structures. Journal of Physics: Condensed Matter, 4(36), 7389-7400. doi:10.1088/0953-8984/4/36/013 | es_ES |
dc.description.references | Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 | es_ES |
dc.description.references | Psarobas, I. E., Stefanou, N., & Modinos, A. (2000). Scattering of elastic waves by periodic arrays of spherical bodies. Physical Review B, 62(1), 278-291. doi:10.1103/physrevb.62.278 | es_ES |
dc.description.references | Laude, V., Moiseyenko, R. P., Benchabane, S., & Declercq, N. F. (2011). Bloch wave deafness and modal conversion at a phononic crystal boundary. AIP Advances, 1(4), 041402. doi:10.1063/1.3675828 | es_ES |
dc.description.references | Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2002). Ultrasound Tunneling through 3D Phononic Crystals. Physical Review Letters, 88(10). doi:10.1103/physrevlett.88.104301 | es_ES |
dc.description.references | Davoyan, A. R., Liu, W., Miroshnichenko, A. E., Shadrivov, I. V., Kivshar, Y. S., & Bozhevolnyi, S. I. (2011). Mode transformation in waveguiding plasmonic structures. Photonics and Nanostructures - Fundamentals and Applications, 9(3), 207-212. doi:10.1016/j.photonics.2011.01.002 | es_ES |