Mostrar el registro sencillo del ítem
dc.contributor.author | Benlloch Tinoco, María | es_ES |
dc.contributor.author | Moraga Ballesteros, Gemma | es_ES |
dc.contributor.author | Camacho Vidal, Mª Mar | es_ES |
dc.contributor.author | Martínez Navarrete, Nuria | es_ES |
dc.date.accessioned | 2015-11-24T08:24:31Z | |
dc.date.available | 2015-11-24T08:24:31Z | |
dc.date.issued | 2013-12 | |
dc.identifier.issn | 1935-5130 | |
dc.identifier.uri | http://hdl.handle.net/10251/57964 | |
dc.description.abstract | Freeze-drying is a dehydration technique which, from a sensory, nutritional and functional point of view, provides high-quality powder products. Nevertheless, both long processing times and high economic costs are required. In this study, pre-drying the samples using hot air or microwave has been considered in order to reduce the initial product's water content thereby shortening the freeze-drying time so as to obtain high value products at a reduced cost. The effect of dehydration pre-treatments on the kinetics, antioxidant activity and solubility of freeze-dried kiwifruit products was evaluated. Nine different thin-layer semi-theoretical models were used to fit the drying data. According to the obtained results, the pre-treated samples exhibited higher drying rates than the fresh sample. In turn, the dehydration pre-treatments used did not affect the solubility or the antioxidant activity of the samples. | es_ES |
dc.description.sponsorship | The authors thank the Ministerio de Educacion y Ciencia and the Generalitat Valenciana for the financial support given throughout the Projects AGL 2010-22176 and ACOMP/2012/161, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Food and Bioprocess Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Freeze-drying | es_ES |
dc.subject | Microwave | es_ES |
dc.subject | Hot air | es_ES |
dc.subject | Drying kinetics | es_ES |
dc.subject | Antioxidant capacity | es_ES |
dc.subject | Solubility | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Combined Drying Technologies for High-Quality Kiwifruit Powder Production | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11947-012-1030-3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-22176/ES/APLICACION DE METODOS COMBINADOS PARA LA OBTENCION DE PRODUCTOS DE FRUTA EN POLVO, DESHIDRATADOS Y FRITOS DE ALTA CALIDAD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F161/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Benlloch Tinoco, M.; Moraga Ballesteros, G.; Camacho Vidal, MM.; Martínez Navarrete, N. (2013). Combined Drying Technologies for High-Quality Kiwifruit Powder Production. Food and Bioprocess Technology. 6(12):3544-3553. https://doi.org/10.1007/s11947-012-1030-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11947-012-1030-3 | es_ES |
dc.description.upvformatpinicio | 3544 | es_ES |
dc.description.upvformatpfin | 3553 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 259778 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Agnieszka, C., & Andrzej, L. (2010). Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries. Journal of Food Engineering, 97, 267–274. | es_ES |
dc.description.references | Akpinar, E. K. (2006). Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering, 73, 75–84. | es_ES |
dc.description.references | Antunes, M. D. C., Dandlen, S., Cavaco, A. M., & Miguel, G. (2010). Effects of postharvest application of 1-mcp and postcutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit. Journal of Agricultural and Food Chemistry, 58, 6173–6181. | es_ES |
dc.description.references | Beekwilder, J., Jonker, H., Meesters, P., Hall, R. D., Van der Meer, I. M., & Vos, C. H. R. (2005). Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. Journal of Agricultural and Food Chemistry, 53, 3313–3320. | es_ES |
dc.description.references | Cano, P. (1991). HPLC separation of chlorophyll and carotenoid pigments of four kiwi fruit cultivars. Journal of Agricultural and Food Chemistry, 39, 1786–1791. | es_ES |
dc.description.references | Clary, C. D., Mejia-Meza, E., Wang, S., & Petrucci, V. E. (2007). Improving grape quality using microwave vacuum drying associated with temperature control. Journal of Food Science, 72(1), 23–28. | es_ES |
dc.description.references | Contreras, C., Martín-Esparza, M. E., Chiralt, A., & Martínez-Navarrete, N. (2008). Influence of microwave application on convective drying: effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88, 55–64. | es_ES |
dc.description.references | Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2007). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504. | es_ES |
dc.description.references | Cozic, C., Picton, L., Garda, M., Marlhoux, F., & Le Cerf, D. (2009). Analysis of arabic gum: study of degradation and water desorption processes. Food Hydrocolloids, 23, 1930–1934. | es_ES |
dc.description.references | Cubero, N., Monferrer, A., & Villalta, J. (2002). Aditivos alimentarios. Madrid: A. Madrid Vicente. | es_ES |
dc.description.references | Daoussi, R., Vessot, S., Andrieu, J., & Monnier, O. (2009). Sublimation kinetics and sublimation end-point times during freeze-drying of pharmaceutical active principle with organic co-solvent formulations. Chemical Engineering Research and Design, 87, 899–907. | es_ES |
dc.description.references | De Ancos, B., Cano, M. P., Hernández, A., & Monreal, M. (1999). Effects of microwave heating on pigment composition and color of fruit purees. Journal of the Science of Food and Agriculture, 79, 663–670. | es_ES |
dc.description.references | Dewanto, V., Wu, X., Adom, K., & Liu, R. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010–3014. | es_ES |
dc.description.references | Doymaz, I. (2004). Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate in the drying kinetics of apricots. Biosystems Engineering, 89(3), 281–287. | es_ES |
dc.description.references | Doymaz, I. (2006). Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering, 76, 212–217. | es_ES |
dc.description.references | Doymaz, I., & Pala, M. (2003). The thin-layer drying characteristics of corn. Journal of Food Engineering, 60, 125–130. | es_ES |
dc.description.references | Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113, 557–562. | es_ES |
dc.description.references | Fabra, M. J., Talens, P., Moraga, G., & Martínez-Navarrete, N. (2009). Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability. Journal of Food Engineering, 93, 52–58. | es_ES |
dc.description.references | Fahloul, D., Lahbari, M., Benmoussa, H., & Mezdour, S. (2009). Effect of osmotic dehydration on the freeze drying kinetics of apricots. Journal of Food, Agriculture and Environment, 7, 117–121. | es_ES |
dc.description.references | Fúster, C., Préstamo, G., & Cano, M. P. (1994). Drip loss, peroxidase and sensory changes in kiwi fruit slices during frozen storage. Journal of the Science of Food and Agriculture, 64, 23–29. | es_ES |
dc.description.references | Fyfe, K. N., Kravchuk, O., Le, T., Deeth, H. C., Nguyen, A. V., & Bhandari, B. (2011). Storage induced changes to high protein powders: influence on surface properties and solubility. Journal of Food Science and Agriculture, 91, 2566–2575. | es_ES |
dc.description.references | Gabas, A. L., Telis, V. R. N., Sobral, P. J. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 82, 246–252. | es_ES |
dc.description.references | Ghosal, S., Indira, T. N., & Bhattacharya, S. (2010). Agglomeration of a model food powder: effect of maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96, 222–228. | es_ES |
dc.description.references | Huang, L., Zhang, W., Mujumdar, A. S., & Lim, R. (2011). Comparison of four drying methods for re-structured mixed potato with apple chips. Journal of Food Engineering, 103, 279–284. | es_ES |
dc.description.references | Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299. | es_ES |
dc.description.references | Igual, M., García-Martínez, E., Martín-Esparza, M. E., & Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and the functional value of dried apricot. Food Research International, 47, 284–290. | es_ES |
dc.description.references | Jaya, S., & Das, H. (2009). Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioprocess Technology, 2, 89–95. | es_ES |
dc.description.references | Karathanos, V. T., & Belessiotis, V. G. (1999). Application of thin-layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research, 74, 355–361. | es_ES |
dc.description.references | Lu, X., Wang, J., Al-Qadiri, M., Ross, C. F., Powers, J. R., Tang, J., & Rasco, B. A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129, 637–644. | es_ES |
dc.description.references | Marques, L. G., Prado, M. M., & Freire, J. T. (2009). Rehydration characteristics of freeze-dried tropical fruits. LWT—Food Science and Technology, 42, 1232–1237. | es_ES |
dc.description.references | Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 177–182. | es_ES |
dc.description.references | Maskan, M., & Gögus, F. (1998). Sorption isotherms and drying characteristics of mulberry (Morus alba). Journal of Food Engineering, 37, 437–449. | es_ES |
dc.description.references | Menlik, T., Özdemir, M. B., & Kirmaci, V. (2010). Determination of freeze-drying behaviours of apples by artificial neural network. Expert Systems with Applications, 37, 7669–7677. | es_ES |
dc.description.references | Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23, 1958–1965. | es_ES |
dc.description.references | Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder. Journal of Food Engineering, 97, 72–78. | es_ES |
dc.description.references | Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47, 201–206. | es_ES |
dc.description.references | Panchariya, P. C., Popovic, D., & Sharma, A. L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349–357. | es_ES |
dc.description.references | Pardo, J. M., & Leiva, D. A. (2010). Effects of different pre-treatments on energy consumption during freeze drying of pineapple pieces. Interciencia, 35(12), 934–938. | es_ES |
dc.description.references | Pina-Pérez, M. C., Rodrigo-Aliaga, D., Saucedo-Reyes, D., & Martínez-López, A. (2007). Pressure inactivation kinetics of Enterobacter sakazakii in infant formula milk. Journal of Food Protection, 70(10), 2281–2289. | es_ES |
dc.description.references | Prabhanjan, D. G., Ramaswamy, H. S., & Raghavan, G. S. V. (1995). Microwave-assisted convective air drying of thin layer carrots. Journal of Food Engineering, 25, 283–293. | es_ES |
dc.description.references | Schokker, E. P., Church, J. S., Mata, J. P., Gilbert, E. P., Puvanenthiran, A., & Udabage, P. (2011). Reconstitution properties of micellar casein powder: effects of composition and storage. International Dairy Journal, 21, 877–886. | es_ES |
dc.description.references | Simal, S., Femenia, A., Garau, M. C., & Roselló, C. (2005). Use of exponential, Page’s and diffusional models to simúlate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328. | es_ES |
dc.description.references | Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of meant leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91, 482–489. | es_ES |
dc.description.references | Togrul, I. T., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32. | es_ES |
dc.description.references | Troygot, O., Saguy, I. S., & Wallach, R. (2011). Determination of characteristic curve from water sorption isotherms. Journal of Food Engineering, 105, 408–415. | es_ES |
dc.description.references | Turkmen, N., Sari, F., & Velioglu, S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93, 713–718. | es_ES |
dc.description.references | Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave treated agricultural products. Biosystems Engineering, 98, 1–16. | es_ES |
dc.description.references | Xiang, J., Hey, J. M., Liedtke, V., & Wang, D. Q. (2004). Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique. International Journal of Pharmaceutics, 279, 95–105. | es_ES |
dc.description.references | Zhai, S., Taylor, R., Sanches, R., & Slater, N. K. H. (2003). Measurement of lyophilisation primary drying rates by freeze-drying microscopy. Chemical Engineering Science, 58, 2313–2323. | es_ES |
dc.description.references | Zhang, M., Tang, J., Mujumdarc, A. S., & Wang, S. (2006). Trends in microwave related drying of fruits and vegetables. Trends in Food Science and Technology, 17, 524–534. | es_ES |
dc.description.references | Zolfaghari, M., Sahari, A., Barzegar, M., & Samadloiy, H. (2010). Physicochemical and enzymatic properties of five kiwifruit cultivars during cold storage. Food Bioprocess Technology, 3, 239–246. | es_ES |