- -

Analysis of parcel-based image classification methods for monitoring the activities of the Land Bank of Galicia (Spain)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Analysis of parcel-based image classification methods for monitoring the activities of the Land Bank of Galicia (Spain)

Show simple item record

Files in this item

dc.contributor.author Hermosilla, T. es_ES
dc.contributor.author Díaz Manso, J.M. es_ES
dc.contributor.author Ruiz Fernández, Luis Ángel es_ES
dc.contributor.author Recio Recio, Jorge Abel es_ES
dc.contributor.author Fernández-Sarría, Alfonso
dc.contributor.author Ferradáns Nogueira, P
dc.date.accessioned 2015-11-26T15:55:10Z
dc.date.available 2015-11-26T15:55:10Z
dc.date.issued 2012-12
dc.identifier.issn 1866-9298
dc.identifier.uri http://hdl.handle.net/10251/58196
dc.description.abstract [EN] The abandonment of agricultural plots entails a low economic productivity of the land and a higher vulnerability to wildfires and degradation of affected areas. In this sense, the local government of Galicia is promoting new methodologies based on high-resolution images in order to classify the territory in basic and generic land uses. This procedure will be used to control the sustainable management of plots belonging to the Land Bank. This paper presents an application study for maintaining and updating land use/land cover geospatial databases using parcel-oriented classification. The test is performed over two geographic areas of Galicia, in the northwest of Spain. In this region, forest and shrublands in mountain environments are very heterogeneous with many private unproductive plots, some of which are in a high state of abandonment. The dataset is made of high spatial resolution multispectral imagery, cadastral cartography employed to define the image objects (plots), and field samples used to define evaluation and training samples. A set of descriptive features is computed quantifying different properties of the objects, i.e. spectral, texture, structural, and geometrical. Additionally, the effect on the classification and updating processes of the historical land use as a descriptive feature is tested. Three different classification methodologies are analyzed: linear discriminant analysis, decision trees, and support vector machine. The overall accuracies of the classifications obtained are always above 90 % and support vector machine method is proved to provide the best performance. Forest and shrublands areas are especially undefined, so the discrimination between these two classes is low. The results enable to conclude that the use of automatic parcel-oriented classification techniques for updating tasks of land use/land cover geospatial databases, is effective in the areas tested, particularly when broad and well defined classes are required. es_ES
dc.description.sponsorship The authors appreciate the collaboration and support provided by Xunta de Galicia, Sociedade para o Desenvolvemento Comarcal de Galícia, and Banco de Terras de Galicia. The financial support provided by the Spanish Ministerio de Ciencia e Innovación in the framework of the projects CGL2010-19591/BTE and CGL2009-14220 is also acknowledged.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Applied Geomatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mapping Agriculture es_ES
dc.subject High-resolution imagery es_ES
dc.subject Change detection es_ES
dc.subject Object-based classification es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Analysis of parcel-based image classification methods for monitoring the activities of the Land Bank of Galicia (Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12518-012-0087-z
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2009-14220/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Hermosilla, T.; Díaz Manso, J.; Ruiz Fernández, LÁ.; Recio Recio, JA.; Fernández-Sarría, A.; Ferradáns Nogueira, P. (2012). Analysis of parcel-based image classification methods for monitoring the activities of the Land Bank of Galicia (Spain). Applied Geomatics. 4(4):245-255. https://doi.org/10.1007/s12518-012-0087-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s12518-012-0087-z es_ES
dc.description.upvformatpinicio 245 es_ES
dc.description.upvformatpfin 255 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 223320 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Arikan M (2004) Parcel-based crop mapping through multi-temporal masking classification of landsat 7 images in Karacabey, Turkey. Int Arch Photogramm Remote Sens Spat Inf Sci 35:1085–1090 es_ES
dc.description.references Balaguer A, Ruiz LA, Hermosilla T, Recio JA (2010) Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification. Comput Geosci 36(2):231–240 es_ES
dc.description.references Balaguer-Besser A, Hermosilla T, Recio JA, Ruiz LA (2011) Semivariogram calculation optimization for object-oriented image classification. Model Sci Educ Learn 4(7):91–104 es_ES
dc.description.references Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm 65(1):2–16 es_ES
dc.description.references Cohen Y, Shoshany M (2000) Integration of remote sensing, GIS and expert knowledge in national knowledge-based crop recognition in Mediterranean environment. Int Arch Photogramm Remote Sens 33(Part B7):280–286 es_ES
dc.description.references Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46 es_ES
dc.description.references Dadhwal VK, Singh RP, Dutta S, Parihar JS (2002) Remote sensing based crop inventory: a review of Indian experience. Trop Ecol 43(1):107–122 es_ES
dc.description.references De Wit AJW, Clevers JGPW (2004) Efficiency and accuracy of per-field classification for operational crop mapping. Int J Remote Sens 25:4091–4112 es_ES
dc.description.references Del Frate F, Pacifici F, Solimini D (2008) Monitoring urban land cover in Rome, Italy, and its changes by single-polarization multitemporal SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 1:87–97 es_ES
dc.description.references Díaz-Manso JM, Ferradáns-Nogueira P (2011) Modelo de uso actual da terra. In: Cobelle-Rico EJ, Diaz-Manso JM, Crecente-Maseda R, Martínez-Rivas EM (eds) Mercado e Mobilidade de Terras en Galícia, 1st edn. Servizo de Publicacións e Intercambio Científico, Santiago de Compostela, Spain, pp 31–44 es_ES
dc.description.references Dupas CA (2000) SAR and LANDSAT TM image fusion for land cover classification in the Brazilian Atlantic Forest Domain. Int Arch Photogramm Remote Sens XXXIII(Part B1):96–103 es_ES
dc.description.references El Kady M, Mack CB (1992) Remote sensing for crop inventory of Egypt’s old agricultural lands. Int Arch Photogramm Remote Sens 29:176–185 es_ES
dc.description.references Everitt BS, Dunn G (2001) Applied multivariate data analysis, 2nd edn. Edward Arnold, London es_ES
dc.description.references Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Transact Syst Man Cybern 3(6):610–622 es_ES
dc.description.references Hermosilla T, Almonacid J, Fernández-Sarría A, Ruiz LA, Recio JA (2010) Combining features extracted from imagery and lidar data for object-oriented classification of forest areas. Int Arch Photogramm Remote Sens Spat Inf Sci 38(4/C7) es_ES
dc.description.references Hernández Orallo J, Ramírez Quintana MJ, Ferri Ramírez C (2004) Introducción a la minería de datos. Pearson Educación S.A, Madrid es_ES
dc.description.references Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 National Land-Cover Database for the United States. Photogramm Eng Remote Sens 70:829–840 es_ES
dc.description.references Huberty CJ (1994) Applied discriminant analysis. Wiley, New York es_ES
dc.description.references Laws KI (1985) Goal-directed texture image segmentation. Appl Artif Intel II, SPIE 548:19–26 es_ES
dc.description.references Ormeci C, Alganci U, Sertel E (2010) Identification of crop areas using SPOT-5 data, FIG Congress 2010 Facing the Challenges—building the capacity. Sydney, Australia, pp 11–16 es_ES
dc.description.references Peled A, Gilichinsky M (2004) GIS-driven analyses of remotely sensed data for quality assessment of existing land cover classification. Int Arch Photogramm Remote Sens Spat Inf Sci 35 es_ES
dc.description.references Peled A, Gilichinsky M (2010) Knowledge-based classification of land cover for the quality assessment of GIS database. Int Arch Photogramm Remote Sens Spat Inf Sci 38:217–222 es_ES
dc.description.references Perveen F, Nagasawa R, Ali S, Husnain (2008) Evaluation of ASTER spectral bands for agricultural land cover mapping using pixel-based and object-based classification approaches. Int Arch Photogramm Remote Sens Spat Inf Sci 37(4-C1) es_ES
dc.description.references Petit CC, Lambin EF (2002) Impact of data integration technique on historical land-use/land-cover change: comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc Ecol 17:117–132 es_ES
dc.description.references Quinlan JR (1993) C4.5: Programs for machine learning. Kaufmann, San Francisco es_ES
dc.description.references Rabe A, van der Linden S, Hostert P (2010) imageSVM, Version 2.1. www.hu-geomatics.de es_ES
dc.description.references Recio JA, Hermosilla T, Ruiz LA, Fernández-Sarría A (2011) Historical land use as a feature for image classification. Photogramm Eng Remote Sens 77(4):377–387 es_ES
dc.description.references Ruiz LA, Fernández-Sarría A, Recio JA (2004) Texture feature extraction for classification of remote sensing data using wavelet decomposition: a comparative study. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B4):1109–1115 es_ES
dc.description.references Ruiz LA, Recio JA, Hermosilla T, Fdez. Sarriá A (2009) Identification of agricultural and land cover database changes using object-oriented classification techniques. 33rd International Symposium on Remote Sensing of Environment, May 4–8, Stresa (Italy) es_ES
dc.description.references Ruiz LA, Recio JA, Fernández-Sarría A, Hermosilla T (2011) A feature extraction software tool for agricultural object-based image analysis. Comput Electron Agric 76(4):284–296 es_ES
dc.description.references Tansey K, Chambers I, Anstee A, Denniss A, Lamb A (2009) Object-oriented classification of very high resolution airborne imagery for the extraction of hedgerows and field margin cover in agricultural areas. Appl Geogr 29(2):145–157 es_ES
dc.description.references van der Linden S, Rabe A, Wirth F, Suess S, Okujeni A, Hostert P (2010) imageSVM regression, application manual: imageSVM version 2.1. Humboldt-Universität zu Berlin, Germany es_ES
dc.description.references Vapnik VN (1998) Statistical learning theory. Wiley, New York es_ES
dc.description.references Walsh SJ, McCleary AL, Mena CF, Shao Y, Tuttle JP, Gonzalez A, Atkinson R (2008) QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: implications for control and land use management. Remote Sens Environ 112(5):1927–1941 es_ES
dc.description.references Walter V (2004) Object-based classification of remote sensing data for change detection. ISPRS J Photogramm Remote Sens 58:225–238 es_ES
dc.description.references Walter V (2005) Object-based evaluation of lidar and multiespectral data for automatic change detection in GIS databases. Geo-Inf Syst 18:10–15 es_ES
dc.description.references Zaragozí, B, Rabasa, A, Rodríguez-Sala, JJ, Navarro, JT, Belda, A, Ramón, A (2012) Modelling farmland abandonment: A study combining GIS and data mining techniques. Agric Ecosys Environ 155:124–132 es_ES
dc.description.references Zhang S, Liu X (2005) Realization of data mining model for expert classification using multi-scale spatial data. Int Arch Photogramm Remote Sens Spat Inf Sci 26(4/W6):107–111 es_ES


This item appears in the following Collection(s)

Show simple item record