Mostrar el registro sencillo del ítem
dc.contributor.author | Hermosilla, T. | es_ES |
dc.contributor.author | Díaz Manso, J.M. | es_ES |
dc.contributor.author | Ruiz Fernández, Luis Ángel | es_ES |
dc.contributor.author | Recio Recio, Jorge Abel | es_ES |
dc.contributor.author | Fernández-Sarría, Alfonso | |
dc.contributor.author | Ferradáns Nogueira, P | |
dc.date.accessioned | 2015-11-26T15:55:10Z | |
dc.date.available | 2015-11-26T15:55:10Z | |
dc.date.issued | 2012-12 | |
dc.identifier.issn | 1866-9298 | |
dc.identifier.uri | http://hdl.handle.net/10251/58196 | |
dc.description.abstract | [EN] The abandonment of agricultural plots entails a low economic productivity of the land and a higher vulnerability to wildfires and degradation of affected areas. In this sense, the local government of Galicia is promoting new methodologies based on high-resolution images in order to classify the territory in basic and generic land uses. This procedure will be used to control the sustainable management of plots belonging to the Land Bank. This paper presents an application study for maintaining and updating land use/land cover geospatial databases using parcel-oriented classification. The test is performed over two geographic areas of Galicia, in the northwest of Spain. In this region, forest and shrublands in mountain environments are very heterogeneous with many private unproductive plots, some of which are in a high state of abandonment. The dataset is made of high spatial resolution multispectral imagery, cadastral cartography employed to define the image objects (plots), and field samples used to define evaluation and training samples. A set of descriptive features is computed quantifying different properties of the objects, i.e. spectral, texture, structural, and geometrical. Additionally, the effect on the classification and updating processes of the historical land use as a descriptive feature is tested. Three different classification methodologies are analyzed: linear discriminant analysis, decision trees, and support vector machine. The overall accuracies of the classifications obtained are always above 90 % and support vector machine method is proved to provide the best performance. Forest and shrublands areas are especially undefined, so the discrimination between these two classes is low. The results enable to conclude that the use of automatic parcel-oriented classification techniques for updating tasks of land use/land cover geospatial databases, is effective in the areas tested, particularly when broad and well defined classes are required. | es_ES |
dc.description.sponsorship | The authors appreciate the collaboration and support provided by Xunta de Galicia, Sociedade para o Desenvolvemento Comarcal de Galícia, and Banco de Terras de Galicia. The financial support provided by the Spanish Ministerio de Ciencia e Innovación in the framework of the projects CGL2010-19591/BTE and CGL2009-14220 is also acknowledged. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Applied Geomatics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mapping Agriculture | es_ES |
dc.subject | High-resolution imagery | es_ES |
dc.subject | Change detection | es_ES |
dc.subject | Object-based classification | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Analysis of parcel-based image classification methods for monitoring the activities of the Land Bank of Galicia (Spain) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12518-012-0087-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2009-14220/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Hermosilla, T.; Díaz Manso, J.; Ruiz Fernández, LÁ.; Recio Recio, JA.; Fernández-Sarría, A.; Ferradáns Nogueira, P. (2012). Analysis of parcel-based image classification methods for monitoring the activities of the Land Bank of Galicia (Spain). Applied Geomatics. 4(4):245-255. https://doi.org/10.1007/s12518-012-0087-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s12518-012-0087-z | es_ES |
dc.description.upvformatpinicio | 245 | es_ES |
dc.description.upvformatpfin | 255 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 223320 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Arikan M (2004) Parcel-based crop mapping through multi-temporal masking classification of landsat 7 images in Karacabey, Turkey. Int Arch Photogramm Remote Sens Spat Inf Sci 35:1085–1090 | es_ES |
dc.description.references | Balaguer A, Ruiz LA, Hermosilla T, Recio JA (2010) Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification. Comput Geosci 36(2):231–240 | es_ES |
dc.description.references | Balaguer-Besser A, Hermosilla T, Recio JA, Ruiz LA (2011) Semivariogram calculation optimization for object-oriented image classification. Model Sci Educ Learn 4(7):91–104 | es_ES |
dc.description.references | Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm 65(1):2–16 | es_ES |
dc.description.references | Cohen Y, Shoshany M (2000) Integration of remote sensing, GIS and expert knowledge in national knowledge-based crop recognition in Mediterranean environment. Int Arch Photogramm Remote Sens 33(Part B7):280–286 | es_ES |
dc.description.references | Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46 | es_ES |
dc.description.references | Dadhwal VK, Singh RP, Dutta S, Parihar JS (2002) Remote sensing based crop inventory: a review of Indian experience. Trop Ecol 43(1):107–122 | es_ES |
dc.description.references | De Wit AJW, Clevers JGPW (2004) Efficiency and accuracy of per-field classification for operational crop mapping. Int J Remote Sens 25:4091–4112 | es_ES |
dc.description.references | Del Frate F, Pacifici F, Solimini D (2008) Monitoring urban land cover in Rome, Italy, and its changes by single-polarization multitemporal SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 1:87–97 | es_ES |
dc.description.references | Díaz-Manso JM, Ferradáns-Nogueira P (2011) Modelo de uso actual da terra. In: Cobelle-Rico EJ, Diaz-Manso JM, Crecente-Maseda R, Martínez-Rivas EM (eds) Mercado e Mobilidade de Terras en Galícia, 1st edn. Servizo de Publicacións e Intercambio Científico, Santiago de Compostela, Spain, pp 31–44 | es_ES |
dc.description.references | Dupas CA (2000) SAR and LANDSAT TM image fusion for land cover classification in the Brazilian Atlantic Forest Domain. Int Arch Photogramm Remote Sens XXXIII(Part B1):96–103 | es_ES |
dc.description.references | El Kady M, Mack CB (1992) Remote sensing for crop inventory of Egypt’s old agricultural lands. Int Arch Photogramm Remote Sens 29:176–185 | es_ES |
dc.description.references | Everitt BS, Dunn G (2001) Applied multivariate data analysis, 2nd edn. Edward Arnold, London | es_ES |
dc.description.references | Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Transact Syst Man Cybern 3(6):610–622 | es_ES |
dc.description.references | Hermosilla T, Almonacid J, Fernández-Sarría A, Ruiz LA, Recio JA (2010) Combining features extracted from imagery and lidar data for object-oriented classification of forest areas. Int Arch Photogramm Remote Sens Spat Inf Sci 38(4/C7) | es_ES |
dc.description.references | Hernández Orallo J, Ramírez Quintana MJ, Ferri Ramírez C (2004) Introducción a la minería de datos. Pearson Educación S.A, Madrid | es_ES |
dc.description.references | Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 National Land-Cover Database for the United States. Photogramm Eng Remote Sens 70:829–840 | es_ES |
dc.description.references | Huberty CJ (1994) Applied discriminant analysis. Wiley, New York | es_ES |
dc.description.references | Laws KI (1985) Goal-directed texture image segmentation. Appl Artif Intel II, SPIE 548:19–26 | es_ES |
dc.description.references | Ormeci C, Alganci U, Sertel E (2010) Identification of crop areas using SPOT-5 data, FIG Congress 2010 Facing the Challenges—building the capacity. Sydney, Australia, pp 11–16 | es_ES |
dc.description.references | Peled A, Gilichinsky M (2004) GIS-driven analyses of remotely sensed data for quality assessment of existing land cover classification. Int Arch Photogramm Remote Sens Spat Inf Sci 35 | es_ES |
dc.description.references | Peled A, Gilichinsky M (2010) Knowledge-based classification of land cover for the quality assessment of GIS database. Int Arch Photogramm Remote Sens Spat Inf Sci 38:217–222 | es_ES |
dc.description.references | Perveen F, Nagasawa R, Ali S, Husnain (2008) Evaluation of ASTER spectral bands for agricultural land cover mapping using pixel-based and object-based classification approaches. Int Arch Photogramm Remote Sens Spat Inf Sci 37(4-C1) | es_ES |
dc.description.references | Petit CC, Lambin EF (2002) Impact of data integration technique on historical land-use/land-cover change: comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc Ecol 17:117–132 | es_ES |
dc.description.references | Quinlan JR (1993) C4.5: Programs for machine learning. Kaufmann, San Francisco | es_ES |
dc.description.references | Rabe A, van der Linden S, Hostert P (2010) imageSVM, Version 2.1. www.hu-geomatics.de | es_ES |
dc.description.references | Recio JA, Hermosilla T, Ruiz LA, Fernández-Sarría A (2011) Historical land use as a feature for image classification. Photogramm Eng Remote Sens 77(4):377–387 | es_ES |
dc.description.references | Ruiz LA, Fernández-Sarría A, Recio JA (2004) Texture feature extraction for classification of remote sensing data using wavelet decomposition: a comparative study. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B4):1109–1115 | es_ES |
dc.description.references | Ruiz LA, Recio JA, Hermosilla T, Fdez. Sarriá A (2009) Identification of agricultural and land cover database changes using object-oriented classification techniques. 33rd International Symposium on Remote Sensing of Environment, May 4–8, Stresa (Italy) | es_ES |
dc.description.references | Ruiz LA, Recio JA, Fernández-Sarría A, Hermosilla T (2011) A feature extraction software tool for agricultural object-based image analysis. Comput Electron Agric 76(4):284–296 | es_ES |
dc.description.references | Tansey K, Chambers I, Anstee A, Denniss A, Lamb A (2009) Object-oriented classification of very high resolution airborne imagery for the extraction of hedgerows and field margin cover in agricultural areas. Appl Geogr 29(2):145–157 | es_ES |
dc.description.references | van der Linden S, Rabe A, Wirth F, Suess S, Okujeni A, Hostert P (2010) imageSVM regression, application manual: imageSVM version 2.1. Humboldt-Universität zu Berlin, Germany | es_ES |
dc.description.references | Vapnik VN (1998) Statistical learning theory. Wiley, New York | es_ES |
dc.description.references | Walsh SJ, McCleary AL, Mena CF, Shao Y, Tuttle JP, Gonzalez A, Atkinson R (2008) QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: implications for control and land use management. Remote Sens Environ 112(5):1927–1941 | es_ES |
dc.description.references | Walter V (2004) Object-based classification of remote sensing data for change detection. ISPRS J Photogramm Remote Sens 58:225–238 | es_ES |
dc.description.references | Walter V (2005) Object-based evaluation of lidar and multiespectral data for automatic change detection in GIS databases. Geo-Inf Syst 18:10–15 | es_ES |
dc.description.references | Zaragozí, B, Rabasa, A, Rodríguez-Sala, JJ, Navarro, JT, Belda, A, Ramón, A (2012) Modelling farmland abandonment: A study combining GIS and data mining techniques. Agric Ecosys Environ 155:124–132 | es_ES |
dc.description.references | Zhang S, Liu X (2005) Realization of data mining model for expert classification using multi-scale spatial data. Int Arch Photogramm Remote Sens Spat Inf Sci 26(4/W6):107–111 | es_ES |