- -

Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hermosilla Gómez, Txomin es_ES
dc.contributor.author Ruiz Fernández, Luis Ángel es_ES
dc.contributor.author Kazakova, Alexandra N.
dc.contributor.author Coops, Nicholas
dc.contributor.author Moskal, L. Monika
dc.date.accessioned 2015-11-26T16:11:58Z
dc.date.available 2015-11-26T16:11:58Z
dc.date.issued 2014
dc.identifier.issn 1049-8001
dc.identifier.uri http://hdl.handle.net/10251/58197
dc.description.abstract Precise knowledge of fuel conditions is important for predicting fire hazards and simulating fire growth and intensity across the landscape. We present a methodology to retrieve and map forest canopy fuel and other forest structural parameters using small-footprint full-waveform airborne light detection and ranging (LiDAR) data. Full-waveform LiDAR sensors register the complete returned backscattered signal through time and can describe physical properties of the intercepted objects. This study was undertaken in a mixed forest dominated by Douglas-fir, occasionally mixed with other conifers, in north-west Oregon (United States). We extracted two sets of LiDAR metrics using pulse detection and waveform modelling and then constructed several predictive models using forward stepwise multiple linear regression. The resulting models explained ~80% of the variability for many of the canopy fuel and forest structure parameters: aboveground biomass (R2 = 0.84), quadratic mean diameter (R2 = 0.82), canopy height (R2 = 0.79), canopy base height (R2 = 0.78) and canopy fuel load (R2 = 0.79). The lowest performing models included basal area (R2 = 0.76), stand volume (R2 = 0.73), canopy bulk density (R2 = 0.67) and stand density index (R2 = 0.66). Our results indicate that full-waveform LiDAR systems show promise in systematically characterising the structure and canopy fuel loads of forests, which may enable accurate fire behaviour forecasting that in turn supports the development of prevention and planning policies. es_ES
dc.description.sponsorship This paper was developed as a result of two mobility grants funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering (TEE Project) and the Generalitat Valenciana (BEST/2012/235). The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation in the framework of the project CGL2010-19591/BTE. In addition, the authors thank the Panther Creek Remote Sensing and Research cooperative program for the data provided for this research, Jim Flewelling (Seattle Biometrics) and George McFadden (Bureau of Land Management) for their help in data availability and preparation. en_EN
dc.language Inglés es_ES
dc.publisher CSIRO Publishing es_ES
dc.relation.ispartof International Journal of Wildland Fire es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1071/WF13086
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2012%2F235/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Hermosilla Gómez, T.; Ruiz Fernández, LÁ.; Kazakova, AN.; Coops, N.; Moskal, LM. (2014). Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire. 23(2):224-233. https://doi.org/10.1071/WF13086 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1071/WF13086 es_ES
dc.description.upvformatpinicio 224 es_ES
dc.description.upvformatpfin 233 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 246544 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Erasmus+ es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. doi:10.1109/tac.1974.1100705 es_ES
dc.description.references Andersen, H.-E., McGaughey, R. J., & Reutebuch, S. E. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94(4), 441-449. doi:10.1016/j.rse.2004.10.013 es_ES
dc.description.references Arroyo, L. A., Pascual, C., & Manzanera, J. A. (2008). Fire models and methods to map fuel types: The role of remote sensing. Forest Ecology and Management, 256(6), 1239-1252. doi:10.1016/j.foreco.2008.06.048 es_ES
dc.description.references Ashworth, A., Evans, D. L., Cooke, W. H., Londo, A., Collins, C., & Neuenschwander, A. (2010). Predicting Southeastern Forest Canopy Heights and Fire Fuel Models using GLAS Data. Photogrammetric Engineering & Remote Sensing, 76(8), 915-922. doi:10.14358/pers.76.8.915 es_ES
dc.description.references Buddenbaum, H., Seeling, S., & Hill, J. (2013). Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. International Journal of Remote Sensing, 34(13), 4511-4524. doi:10.1080/01431161.2013.776721 es_ES
dc.description.references Chuvieco, E., & Congalton, R. G. (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sensing of Environment, 29(2), 147-159. doi:10.1016/0034-4257(89)90023-0 es_ES
dc.description.references CHUVIECO, E., & SALAS, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International journal of geographical information systems, 10(3), 333-345. doi:10.1080/02693799608902082 es_ES
dc.description.references Chuvieco, E., Riaño, D., Aguado, I., & Cocero, D. (2002). Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. International Journal of Remote Sensing, 23(11), 2145-2162. doi:10.1080/01431160110069818 es_ES
dc.description.references Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martı́nez-Vega, J., de la Riva, J., & Pérez, F. (2004). Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92(3), 322-331. doi:10.1016/j.rse.2004.01.019 es_ES
dc.description.references Cruz, M. G., Alexander, M. E., & Wakimoto, R. H. (2003). Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. International Journal of Wildland Fire, 12(1), 39. doi:10.1071/wf02024 es_ES
dc.description.references Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., … Prince, S. (2002). Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79(2-3), 305-319. doi:10.1016/s0034-4257(01)00281-4 es_ES
dc.description.references Erdody, T. L., & Moskal, L. M. (2010). Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment, 114(4), 725-737. doi:10.1016/j.rse.2009.11.002 es_ES
dc.description.references Falkowski, M. J., Gessler, P. E., Morgan, P., Hudak, A. T., & Smith, A. M. S. (2005). Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. Forest Ecology and Management, 217(2-3), 129-146. doi:10.1016/j.foreco.2005.06.013 es_ES
dc.description.references Flannigan, M. ., Stocks, B. ., & Wotton, B. . (2000). Climate change and forest fires. Science of The Total Environment, 262(3), 221-229. doi:10.1016/s0048-9697(00)00524-6 es_ES
dc.description.references García, M., Popescu, S., Riaño, D., Zhao, K., Neuenschwander, A., Agca, M., & Chuvieco, E. (2012). Characterization of canopy fuels using ICESat/GLAS data. Remote Sensing of Environment, 123, 81-89. doi:10.1016/j.rse.2012.03.018 es_ES
dc.description.references González-Olabarria, J.-R., Rodríguez, F., Fernández-Landa, A., & Mola-Yudego, B. (2012). Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282, 149-156. doi:10.1016/j.foreco.2012.06.056 es_ES
dc.description.references Hall, S. A., Burke, I. C., Box, D. O., Kaufmann, M. R., & Stoker, J. M. (2005). Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208(1-3), 189-209. doi:10.1016/j.foreco.2004.12.001 es_ES
dc.description.references Harding, D. J. (2005). ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters, 32(21). doi:10.1029/2005gl023471 es_ES
dc.description.references Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi:10.1016/j.jag.2010.09.010 es_ES
dc.description.references Höfle, B., Hollaus, M., & Hagenauer, J. (2012). Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 134-147. doi:10.1016/j.isprsjprs.2011.12.003 es_ES
dc.description.references HYDE, P., DUBAYAH, R., PETERSON, B., BLAIR, J., HOFTON, M., HUNSAKER, C., … WALKER, W. (2005). Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems. Remote Sensing of Environment, 96(3-4), 427-437. doi:10.1016/j.rse.2005.03.005 es_ES
dc.description.references Keane, R. E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 10(4), 301. doi:10.1071/wf01028 es_ES
dc.description.references Kim, Y., Yang, Z., Cohen, W. B., Pflugmacher, D., Lauver, C. L., & Vankat, J. L. (2009). Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing of Environment, 113(11), 2499-2510. doi:10.1016/j.rse.2009.07.010 es_ES
dc.description.references Koetz, B., Morsdorf, F., Sun, G., Ranson, K. J., Itten, K., & Allgower, B. (2006). Inversion of a Lidar Waveform Model for Forest Biophysical Parameter Estimation. IEEE Geoscience and Remote Sensing Letters, 3(1), 49-53. doi:10.1109/lgrs.2005.856706 es_ES
dc.description.references Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., & Harding, D. (1999). Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sensing of Environment, 70(3), 339-361. doi:10.1016/s0034-4257(99)00052-8 es_ES
dc.description.references Listopad, C. M. C. S., Drake, J. B., Masters, R. E., & Weishampel, J. F. (2011). Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots. Remote Sensing, 3(7), 1284-1307. doi:10.3390/rs3071284 es_ES
dc.description.references Mallet, C., & Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 1-16. doi:10.1016/j.isprsjprs.2008.09.007 es_ES
dc.description.references Morsdorf, F., Meier, E., Kötz, B., Itten, K. I., Dobbertin, M., & Allgöwer, B. (2004). LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment, 92(3), 353-362. doi:10.1016/j.rse.2004.05.013 es_ES
dc.description.references Neuenschwander, A. L. (2009). Landcover classification of small-footprint, full-waveform lidar data. Journal of Applied Remote Sensing, 3(1), 033544. doi:10.1117/1.3229944 es_ES
dc.description.references Reich, R. M., Lundquist, J. E., & Bravo, V. A. (2004). Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. International Journal of Wildland Fire, 13(1), 119. doi:10.1071/wf02049 es_ES
dc.description.references Reitberger, J., Krzystek, P., & Stilla, U. (2008). Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. International Journal of Remote Sensing, 29(5), 1407-1431. doi:10.1080/01431160701736448 es_ES
dc.description.references Riaño, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., & Bastarrika, A. (2002). Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 32(8), 1301-1315. doi:10.1139/x02-052 es_ES
dc.description.references Riaño, D. (2003). Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment, 86(2), 177-186. doi:10.1016/s0034-4257(03)00098-1 es_ES
dc.description.references Riaño, D., Chuvieco, E., Condés, S., González-Matesanz, J., & Ustin, S. L. (2004). Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment, 92(3), 345-352. doi:10.1016/j.rse.2003.12.014 es_ES
dc.description.references Riaño, D., Chuvieco, E., Ustin, S. L., Salas, J., Rodríguez-Pérez, J. R., Ribeiro, L. M., … Fernández, H. (2007). Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire, 16(3), 341. doi:10.1071/wf06003 es_ES
dc.description.references SKOWRONSKI, N., CLARK, K., NELSON, R., HOM, J., & PATTERSON, M. (2007). Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sensing of Environment, 108(2), 123-129. doi:10.1016/j.rse.2006.09.032 es_ES
dc.description.references Skowronski, N. S., Clark, K. L., Duveneck, M., & Hom, J. (2011). Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment, 115(2), 703-714. doi:10.1016/j.rse.2010.10.012 es_ES
dc.description.references Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4 es_ES
dc.description.references Vaughn, N. R., Moskal, L. M., & Turnblom, E. C. (2012). Tree Species Detection Accuracies Using Discrete Point Lidar and Airborne Waveform Lidar. Remote Sensing, 4(2), 377-403. doi:10.3390/rs4020377 es_ES
dc.description.references Wagner, W., Hollaus, M., Briese, C., & Ducic, V. (2008). 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners. International Journal of Remote Sensing, 29(5), 1433-1452. doi:10.1080/01431160701736398 es_ES
dc.description.references Wilson, B. A., Ow, C. F. Y., Heathcott, M., Milne, D., McCaffrey, T. M., Ghitter, G., & Franklin, S. E. (1994). Landsat MSS Classification of Fire Fuel Types in Wood Buffalo National Park, Northern Canada. Global Ecology and Biogeography Letters, 4(2), 33. doi:10.2307/2997751 es_ES
dc.description.references Zhao, K., Popescu, S., Meng, X., Pang, Y., & Agca, M. (2011). Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment, 115(8), 1978-1996. doi:10.1016/j.rse.2011.04.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem