- -

Engineering surface waves in flat phononic plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineering surface waves in flat phononic plates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Estrada, Héctor es_ES
dc.contributor.author Candelas Valiente, Pilar es_ES
dc.contributor.author Belmar Ibáñez, Francisco es_ES
dc.contributor.author Uris Martínez, Antonio es_ES
dc.contributor.author García de Abajo, F. Javier es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2015-12-03T07:44:04Z
dc.date.available 2015-12-03T07:44:04Z
dc.date.issued 2012-05-01
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/58487
dc.description.abstract Surface acoustic-wave phenomena span a wide range of length scales going from the devastation of earthquakes down to image reconstruction of buried nanostructures. In solid-fluid systems, the so-called Scholte-Stoneley waves (SSWs) dominate the scene at the interface with their evanescent fields decaying away into both media. Understanding and manipulating these waves in patterned surfaces would enable new applications of sound to be devised for imaging and acoustic signal processing, although this task has so far remained elusive. Here, we report SSW modes displaying directional gaps and band folding in fluid-loaded solid phononic plates. The plates are inhomogeneously patterned with in-plane periodic modulations of the elastic constants, but present flat surfaces free of corrugations. We experimentally demonstrate control of SSWs, which opens a promising route toward acoustic fluid sensing, microscopy, and signal processing. es_ES
dc.description.sponsorship This work has been supported in part by the Spanish MICINN (MAT2010-16879, MAT2010-14885, Consolider CSD2007-00046, and NanoLight.es), the EU (NMP4-SL-2008-213669-ENSEMBLE), Generalitat Valenciana (PROM-ETEO 2010/043), and Universidad Politecnica de Valencia (PAID-06-10-1839). H.E. acknowledges financial support through JAE from CSIC. We thank B. Bonello for fruitful discussions. We gratefully acknowledge help from J. A. Garcia-Manrique, J. V. Giner, and I. Rodriguez in PP fabrication. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustic waves es_ES
dc.subject Modal analysis es_ES
dc.subject Hole arrays es_ES
dc.subject Sound es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Engineering surface waves in flat phononic plates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.85.174301
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-16879/ES/ONDAS MECANICAS EN PLACAS PERFORADAS. APLICACIONES TECNOLOGICAS: ADAPTADORES DE IMPEDANCIAS Y AISLAMIENTO ACUSTICO A RUIDO AEREO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/213669/EU/ENgineered SElf-organized Multi-component structures with novel controllaBLe Electromagnetic functionalities/ENSEMBLE/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-14885/ES/RESPUESTA OPTICA DE NANOESTRUCTURAS E INTERACCION DE ELECTRONES RAPIDOS CON EL CAMPO CERCANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10-1839/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Estrada, H.; Candelas Valiente, P.; Belmar Ibáñez, F.; Uris Martínez, A.; García De Abajo, FJ.; Meseguer Rico, FJ. (2012). Engineering surface waves in flat phononic plates. Physical Review B. 85(17). https://doi.org/10.1103/PhysRevB.85.174301 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.85.174301 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.description.issue 17 es_ES
dc.relation.senia 234923 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder European Commission
dc.description.references Dintinger, J., Klein, S., & Ebbesen, T. W. (2006). Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching. Advanced Materials, 18(10), 1267-1270. doi:10.1002/adma.200502393 es_ES
dc.description.references Teperik, T. V., García de Abajo, F. J., Borisov, A. G., Abdelsalam, M., Bartlett, P. N., Sugawara, Y., & Baumberg, J. J. (2008). Omnidirectional absorption in nanostructured metal surfaces. Nature Photonics, 2(5), 299-301. doi:10.1038/nphoton.2008.76 es_ES
dc.description.references Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F. J., & Meseguer, F. (2008). Extraordinary Sound Screening in Perforated Plates. Physical Review Letters, 101(8). doi:10.1103/physrevlett.101.084302 es_ES
dc.description.references Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., & Wolff, P. A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668), 667-669. doi:10.1038/35570 es_ES
dc.description.references Wilson, G. P., & Soroka, W. W. (1965). Approximation to the Diffraction of Sound by a Circular Aperture in a Rigid Wall of Finite Thickness. The Journal of the Acoustical Society of America, 37(2), 286-297. doi:10.1121/1.1909325 es_ES
dc.description.references Javier García de Abajo, F., Estrada, H., & Meseguer, F. (2009). Diacritical study of light, electrons and sound scattering by particles and holes. New Journal of Physics, 11(9), 093013. doi:10.1088/1367-2630/11/9/093013 es_ES
dc.description.references Estrada, H., García de Abajo, F. J., Candelas, P., Uris, A., Belmar, F., & Meseguer, F. (2009). Angle-Dependent Ultrasonic Transmission through Plates with Subwavelength Hole Arrays. Physical Review Letters, 102(14). doi:10.1103/physrevlett.102.144301 es_ES
dc.description.references Rayleigh, Lord. (1885). On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of the London Mathematical Society, s1-17(1), 4-11. doi:10.1112/plms/s1-17.1.4 es_ES
dc.description.references Lamb, H. (1917). On Waves in an Elastic Plate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 93(648), 114-128. doi:10.1098/rspa.1917.0008 es_ES
dc.description.references Kelders, L., Allard, J. F., & Lauriks, W. (1998). Ultrasonic surface waves above rectangular-groove gratings. The Journal of the Acoustical Society of America, 103(5), 2730-2733. doi:10.1121/1.422793 es_ES
dc.description.references He, Z., Jia, H., Qiu, C., Ye, Y., Hao, R., Ke, M., & Liu, Z. (2011). Nonleaky surface acoustic waves on a textured rigid surface. Physical Review B, 83(13). doi:10.1103/physrevb.83.132101 es_ES
dc.description.references Christensen, J., Martin-Moreno, L., & Garcia-Vidal, F. J. (2008). Theory of Resonant Acoustic Transmission through Subwavelength Apertures. Physical Review Letters, 101(1). doi:10.1103/physrevlett.101.014301 es_ES
dc.description.references Zhou, L., & Kriegsmann, G. A. (2007). Complete transmission through a periodically perforated rigid slab. The Journal of the Acoustical Society of America, 121(6), 3288. doi:10.1121/1.2721878 es_ES
dc.description.references Lu, M.-H., Liu, X.-K., Feng, L., Li, J., Huang, C.-P., Chen, Y.-F., … Ming, N.-B. (2007). Extraordinary Acoustic Transmission through a 1D Grating with Very Narrow Apertures. Physical Review Letters, 99(17). doi:10.1103/physrevlett.99.174301 es_ES
dc.description.references Hou, B., Mei, J., Ke, M., Wen, W., Liu, Z., Shi, J., & Sheng, P. (2007). Tuning Fabry-Perot resonances via diffraction evanescent waves. Physical Review B, 76(5). doi:10.1103/physrevb.76.054303 es_ES
dc.description.references Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L., & Garcia-Vidal, F. J. (2007). Collimation of sound assisted by acoustic surface waves. Nature Physics, 3(12), 851-852. doi:10.1038/nphys774 es_ES
dc.description.references Breazeale, M. A., & Torbett, M. A. (1976). Backward displacement of waves reflected from an interface having superimposed periodicity. Applied Physics Letters, 29(8), 456-458. doi:10.1063/1.89143 es_ES
dc.description.references Declercq, N. F., Degrieck, J., Briers, R., & Leroy, O. (2004). Theory of the backward beam displacement on periodically corrugated surfaces and its relation to leaky Scholte-Stoneley waves. Journal of Applied Physics, 96(11), 6869-6877. doi:10.1063/1.1808247 es_ES
dc.description.references Liang, Z., & Li, J. (2011). Bandwidth and resolution of super-resolution imaging with perforated solids. AIP Advances, 1(4), 041503. doi:10.1063/1.3676169 es_ES
dc.description.references Hsu, J.-C., & Wu, T.-T. (2006). Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Physical Review B, 74(14). doi:10.1103/physrevb.74.144303 es_ES
dc.description.references Mohammadi, S., Eftekhar, A. A., Khelif, A., Hunt, W. D., & Adibi, A. (2008). Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates. Applied Physics Letters, 92(22), 221905. doi:10.1063/1.2939097 es_ES
dc.description.references Every, A. G., Vines, R. E., & Wolfe, J. P. (1999). Line-focus probe excitation of Scholte acoustic waves at the liquid-loaded surfaces of periodic structures. Physical Review B, 60(16), 11755-11760. doi:10.1103/physrevb.60.11755 es_ES
dc.description.references Jia, X. (1997). Modal analysis of Lamb wave generation in elastic plates by liquid wedge transducers. The Journal of the Acoustical Society of America, 101(2), 834-842. doi:10.1121/1.418041 es_ES
dc.description.references Núñez, I., Ing, R. K., Negreira, C., & Fink, M. (2000). Transfer and Green functions based on modal analysis for Lamb waves generation. The Journal of the Acoustical Society of America, 107(5), 2370-2378. doi:10.1121/1.428623 es_ES
dc.description.references Alleyne, D., & Cawley, P. (1991). A two-dimensional Fourier transform method for the measurement of propagating multimode signals. The Journal of the Acoustical Society of America, 89(3), 1159-1168. doi:10.1121/1.400530 es_ES
dc.description.references Glorieux, C., Van de Rostyne, K., Nelson, K., Gao, W., Lauriks, W., & Thoen, J. (2001). On the character of acoustic waves at the interface between hard and soft solids and liquids. The Journal of the Acoustical Society of America, 110(3), 1299-1306. doi:10.1121/1.1396333 es_ES
dc.description.references Maev, R. G. (2008). Acoustic Microscopy. doi:10.1002/9783527623136 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem