- -

Application of independent component analysis for evaluation of ashlar masonry walls

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of independent component analysis for evaluation of ashlar masonry walls

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Safont Armero, Gonzalo es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.date.accessioned 2015-12-05T09:58:46Z
dc.date.available 2015-12-05T09:58:46Z
dc.date.issued 2011
dc.identifier.isbn 978-3-642-21497-4 (Print)
dc.identifier.isbn 978-3-642-21498-1 (Online)
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/58588
dc.description.abstract [EN] This paper presents a novel application of Independent Component Analysis (ICA) to the evaluation of ashlar masonry walls inspected with Ground Penetrating Radar (GPR). ICA is used as preprocessor to eliminate the background from the backscattered signals. Thus, signal-to-noise ratio of the GPR signals is enhanced. Several experiments were made on scale models of historic ashlar masonry walls. These models were loaded with different weights, and the corresponding B-Scans were obtained. ICA shows the best performance to enhance the quality of the B-Scans compared with classical methods used in GPR signal processing. es_ES
dc.description.sponsorship This work has been supported by the Generalitat Valenciana under grant PROMETEO/2010/040, and the Spanish Administration and the FEDER Programme of the European Union under grant TEC 2008-02975/TEC.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Lecture Notes in Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ICA es_ES
dc.subject GPR es_ES
dc.subject NDT es_ES
dc.subject Clutter es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Application of independent component analysis for evaluation of ashlar masonry walls es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/978-3-642-21498-1_59
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F040/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-02975/ES/PROCESADOR NO-LINEAL DE MEZCLAS CON APLICACION EN DETECCION, CLASIFICACION, FILTRADO Y PREDICCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Salazar Afanador, A.; Safont Armero, G.; Vergara Domínguez, L. (2011). Application of independent component analysis for evaluation of ashlar masonry walls. Lecture Notes in Computer Science. 6691(1):469-476. https://doi.org/10.1007/978-3-642-21498-1_59 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/978-3-642-21498-1_59 es_ES
dc.description.upvformatpinicio 469 es_ES
dc.description.upvformatpfin 476 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6691 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 211852 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.description.references Salazar, A., Unió, J.M., Serrano, A., Gosalbez, J.: Neural networks for defect detection in non-destructive evaluation by sonic signals. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 638–645. Springer, Heidelberg (2007) es_ES
dc.description.references Salazar, A., Vergara, L., Llinares, R.: Learning material defect patterns by separating mixtures of independent component analyzers from NDT sonic signals. Mechanical Systems and Signal processing 24(6), 1870–1886 (2010) es_ES
dc.description.references Zhao, A., Jiang, Y., Wang, W.: Exploring Independent Component Analysis for GPR Signal Processing. In: Progress In Electromagnetics Research Symposium 2005, pp. 750–753. The Electromagnetics Academy, Cambridge (2005) es_ES
dc.description.references Abujarad, F., Omar, A.: Comparison of Independent-Component Analysis (ICA) Algorithms for GPR Detection of Non-Metallic Land Mines. In: Bruzzone, L. (ed.) Proceedings of SPIE Image and Signal Processing for Remote Sensing XII, vol. 6365, pp. 636516.1–636516.12. SPIE, Bellingham (2006) es_ES
dc.description.references Liu, J.X., Zhang, B., Wu, R.B.: GPR Ground Bounce Removal Methods Based on Blind Source Separation. In: Progress In Electromagnetics Research Symposium 2006, pp. 256–259. The Electromagnetics Academy, Cambridge (2006) es_ES
dc.description.references Verma, P.K., Gaikwad, A.N., Sigh, D., Nigam, M.J.: Analysis of Clutter Reduction Techniques for Through Wall Imaging in UWB Range. In: Progres. Electromagnetics Research B 2009, vol. 17, pp. 29–48. The Electromagnetics Academy, Cambridge (2009) es_ES
dc.description.references Salazar, A., Vergara, L., Serrano, A., Igual, J.: A General Procedure for Learning Mixtures of Independent Component Analyzers. Pattern Recognition 43(1), 69–85 (2010) es_ES
dc.description.references Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993) es_ES
dc.description.references Ziehe, A., Muller, K.R.: TDSEP - An Efficient Algorithm for Blind Separation Using Time Structure. In: Proceedings of the Eighth International Conference on Artificial Neural Networks ICANN 1998, Perspectives in Neural Computing, pp. 675–680 (1998) es_ES
dc.description.references Reynolds, J.M.: An Introduction to Applied and Environmental Geophysics. Wiley, Chichester (1997) es_ES
dc.description.references Igual, J., Camacho, A., Vergara, L.: A blind source separation technique for extracting sinusoidal interferences in ultrasonic non-destructive testing. Journal of VLSI Signal Processing 38, 25–34 (2004) es_ES
dc.description.references Salazar, A., Gosálbez, J., Igual, J., Llinares, R., Vergara, L.: Two applications of independent component analysis for non-destructive evaluation by ultrasounds. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 406–413. Springer, Heidelberg (2006) es_ES
dc.description.references Raghavan, R.S.: A Model for Spatially Correlated Radar Clutter. IEEE Trans. on Aerospace and Electronic Systems 27, 268–275 (1991) es_ES
dc.description.references Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. EURASIP Journal on Advances in Signal Processing, Article ID 125201, 11 (2010), doi:10.1155/2010/125201 es_ES
dc.description.references Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90(7), 2314–2318 (2010) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem