- -

Multisensor network system for wildfire detection using infrared image processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multisensor network system for wildfire detection using infrared image processing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bosch Roig, Ignacio es_ES
dc.contributor.author Serrano Cartagena, Arturo es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.date.accessioned 2015-12-09T08:17:11Z
dc.date.available 2015-12-09T08:17:11Z
dc.date.issued 2013
dc.identifier.issn 2356-6140
dc.identifier.uri http://hdl.handle.net/10251/58619
dc.description.abstract This paper presents the next step in the evolution of multi-sensor wireless network systems in the early automatic detection of forest fires.This network allows remote monitoring of each of the locations as well as communication between each of the sensors and with the control stations.The result is an increased coverage area, with quicker and safer responses. To determine the presence of a forest wildfire, the system employs decision fusion in thermal imaging, which can exploit various expected characteristics of a real fire, including short-term persistence and long-term increases over time. Results from testing in the laboratory and in a real environment are presented to authenticate and verify the accuracy of the operation of the proposed system.The systemperformance is gauged by the number of alarms and the time to the first alarm (corresponding to a real fire), for different probability of false alarm (PFA).The necessity of including decision fusion is thereby demonstrated. es_ES
dc.description.sponsorship This work has been supported by Generalitat Valenciana under Grant PROMETEO 2010-040 and Spanish Administration and European Union FEDER Programme under Grant TEC2011-23403 01/01/2012. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof The Scientific World Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multi-sensor es_ES
dc.subject Wireless network es_ES
dc.subject Automatic detection es_ES
dc.subject Forest fires es_ES
dc.subject Decision fusion es_ES
dc.subject Thermal imaging es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multisensor network system for wildfire detection using infrared image processing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/402196
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F040/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-23403/ES/ALGORITMOS PARA EL ANALISIS DE MODALIDAD DE SEÑAL: APLICACION EN EL PROCESADO AVANZADO DE SEÑALES ACUSTICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Bosch Roig, I.; Serrano Cartagena, A.; Vergara Domínguez, L. (2013). Multisensor network system for wildfire detection using infrared image processing. The Scientific World Journal. https://doi.org/10.1155/2013/402196 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/402196 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 255855 es_ES
dc.identifier.eissn 1537-744X
dc.identifier.pmid 23843734 en_EN
dc.identifier.pmcid PMC3697789 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Rauste, Y., Herland, E., Frelander, H., Soini, K., Kuoremaki, T., & Ruokari, A. (1997). Satellite-based forest fire detection for fire control in boreal forests. International Journal of Remote Sensing, 18(12), 2641-2656. doi:10.1080/014311697217512 es_ES
dc.description.references Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment, 87(2-3), 273-282. doi:10.1016/s0034-4257(03)00184-6 es_ES
dc.description.references Carlotto, M. J. (1997). Detection and analysis of change in remotely sensed imagery with application to wide area surveillance. IEEE Transactions on Image Processing, 6(1), 189-202. doi:10.1109/83.552106 es_ES
dc.description.references Arrue, B. C., Ollero, A., & Matinez de Dios, J. R. (2000). An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intelligent Systems, 15(3), 64-73. doi:10.1109/5254.846287 es_ES
dc.description.references Vicente, J., & Guillemant, P. (2002). An image processing technique for automatically detecting forest fire. International Journal of Thermal Sciences, 41(12), 1113-1120. doi:10.1016/s1290-0729(02)01397-2 es_ES
dc.description.references Briz, S. (2003). Reduction of false alarm rate in automatic forest fire infrared surveillance systems. Remote Sensing of Environment, 86(1), 19-29. doi:10.1016/s0034-4257(03)00064-6 es_ES
dc.description.references Martinez-de Dios, J. R., Arrue, B. C., Ollero, A., Merino, L., & Gómez-Rodríguez, F. (2008). Computer vision techniques for forest fire perception. Image and Vision Computing, 26(4), 550-562. doi:10.1016/j.imavis.2007.07.002 es_ES
dc.description.references Töreyin, B. U. (2007). Fire detection in infrared video using wavelet analysis. Optical Engineering, 46(6), 067204. doi:10.1117/1.2748752 es_ES
dc.description.references Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722 es_ES
dc.description.references Lloret, J., Bosch, I., Sendra, S., & Serrano, A. (2011). A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing. Sensors, 11(6), 6165-6196. doi:10.3390/s110606165 es_ES
dc.description.references Ho, C.-C. (2009). Machine vision-based real-time early flame and smoke detection. Measurement Science and Technology, 20(4), 045502. doi:10.1088/0957-0233/20/4/045502 es_ES
dc.description.references Günay, O., Taşdemir, K., Uğur Töreyin, B., & Enis Çetin, A. (2009). Video based wildfire detection at night. Fire Safety Journal, 44(6), 860-868. doi:10.1016/j.firesaf.2009.04.003 es_ES
dc.description.references Pastor, E. (2003). Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 29(2), 139-153. doi:10.1016/s0360-1285(03)00017-0 es_ES
dc.description.references Vergara, L., & Bernabeu, P. (2000). Automatic signal detection applied to fire control by infrared digital signal processing. Signal Processing, 80(4), 659-669. doi:10.1016/s0165-1684(99)00159-0 es_ES
dc.description.references Vergara, L., & Bernabeu, P. (2001). Simple approach to nonlinear prediction. Electronics Letters, 37(14), 926. doi:10.1049/el:20010616 es_ES
dc.description.references Bernabeu, P., Vergara, L., Bosh, I., & Igual, J. (2004). A prediction/detection scheme for automatic forest fire surveillance. Digital Signal Processing, 14(5), 481-507. doi:10.1016/j.dsp.2004.06.003 es_ES
dc.description.references Bosch, I., Gómez, S., & Vergara, L. (2011). A ground system for early forest fire detection based on infrared signal processing. International Journal of Remote Sensing, 32(17), 4857-4870. doi:10.1080/01431161.2010.490245 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem